Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
基本信息
- 批准号:9903433
- 负责人:
- 金额:$ 55.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAmericanAnimal ExperimentsAnimal ModelAnimalsAutomobile DrivingBindingBiologyCardiacCardiovascular PhysiologyCellsClinicalClinical TrialsComputer ModelsComputersCoupledDNA Sequence AlterationDataDepressed moodDevelopmentDilated CardiomyopathyDiseaseDisease ProgressionEFRACEngineeringFailureFiberFunctional disorderGeneticGoalsHeadHeartHeart DiseasesHeart HypertrophyHeart failureHumanImpairmentMeasurementMeasuresMechanicsModelingMolecularMolecular TargetMusMuscleMuscle ProteinsMuscle functionMutant Strains MiceMutationMyocardiumMyosin ATPasePatientsPhosphorylationPhosphorylation SitePhysiciansProteinsPublic HealthPumpRecombinantsRelaxationSarcomeresSiteTestingTherapeuticThin FilamentTreatment EfficacyVariantViralbasecostdesigneffective therapyexperimental studygain of function mutationhemodynamicshuman modelimprovedin silicoin vivomathematical modelmolecular targeted therapiesmouse modelmulti-scale modelingmutantmyosin-binding protein Cnew therapeutic targetnovel therapeuticspersonalized medicinepreservationreconstitutionresponsescreeningtherapy developmenttreatment optimizationtreatment planningviral gene delivery
项目摘要
PROJECT ABSTRACT
In this project, we will develop a new computational modeling framework capable of designing targeted
molecular therapies for heart failure. Impairment of cardiac muscle function constitutes a major clinical problem
and comes in many forms. For example, sarcomere-level contraction is depressed in many of the 3 million
Americans who have Heart Failure with reduced Ejection Fraction (HFrEF). The opposite issue, excessive
activity of muscle proteins, can contribute to Heart Failure with preserved Ejection Fraction (HFpEF) by slowing
relaxation and stiffening the ventricle. Genetic mutations to sarcomeric proteins afflict another 700,000
Americans. Gain of function mutations typically produce cardiac hypertrophy while loss of molecular function
results in dilated cardiomyopathy. Patients and physicians urgently need better therapies for these conditions
but the clinical trials used to test potential new strategies cost ~$1 billion and are plagued by high failure rates.
This project tests the hypothesis that computer modeling can help to overcome these challenges by efficiently
predicting the therapeutic potential of novel drug targets in the context of each different form of heart failure.
The ultimate goal would be to screen a wide range of molecular strategies in silico and then select the most
promising options for animal experiments and/or clinical trials. In the long term, it might even be possible to
implement patient-specific computer modeling to help optimize treatment plans. The more immediate impacts
would include reducing costs and focusing trials on the most effective molecular targets.
The first step is to establish the feasibility of a modeling-driven pipeline using murine models of heart failure
(HF) and a single molecular target. Recent studies show that sarcomere-focused treatments for HF have
significant promise and that myosin-binding protein-C (MyBPC) could be a particularly effective target. This is
because MyBPC can both enhance and inhibit contractility with the net regulatory effect depending on the
phosphorylation status of three known residues. Phospho-variants of MyBPC could therefore be engineered to
increase or decrease cardiac contractility as desired. In our view, the main roadblock hindering MyBPC's
development as a potential new therapy is incomplete understanding of the molecule's mechanistic action.
Specifically, it is not yet known precisely how the phosphorylation status of each residue modulates MyBPC's
ability to enhance function (by activating the thin filament) and depress function (by restricting the mobility of
detached myosin heads).
The goals of this project are therefore to (1) develop a modeling framework that establishes how site-specific
MyBPC phosphorylation impacts contractile function, (2) validate the model using sarcomere to animal-level
experiments, and (3) test the pipeline's ability to predict effective therapeutic strategies by combining in silico
screening and viral delivery of computer-selected mutant MyBPC.
项目摘要
在这个项目中,我们将开发一个新的计算建模框架,能够设计有针对性的
心力衰竭的分子疗法。心肌功能受损是一个主要的临床问题
并且有多种形式。例如,在 300 万人中,许多人的肌节水平收缩受到抑制。
患有射血分数降低 (HFrEF) 心力衰竭的美国人。相反的问题,过度
肌肉蛋白的活性,可通过减缓射血分数(HFpEF)导致心力衰竭
心室松弛和僵硬。肌节蛋白的基因突变影响了另外 70 万人的健康
美国人。功能获得突变通常会导致心脏肥大,而分子功能丧失
结果导致扩张型心肌病。患者和医生迫切需要更好的治疗方法来治疗这些疾病
但用于测试潜在新策略的临床试验耗资约 10 亿美元,并且失败率很高。
该项目测试了以下假设:计算机建模可以通过有效地帮助克服这些挑战
预测新药物靶点在每种不同形式的心力衰竭中的治疗潜力。
最终目标是通过计算机筛选各种分子策略,然后选择最适合的分子策略。
动物实验和/或临床试验的有希望的选择。从长远来看,甚至有可能
实施针对患者的计算机建模以帮助优化治疗计划。更直接的影响
将包括降低成本并将试验重点放在最有效的分子靶标上。
第一步是利用小鼠心力衰竭模型建立建模驱动管道的可行性
(HF) 和单分子靶标。最近的研究表明,以肌节为重点的心力衰竭治疗方法
肌球蛋白结合蛋白-C (MyBPC) 可能是一个特别有效的靶点。这是
因为 MyBPC 既可以增强也可以抑制收缩性,其净调节效果取决于
三个已知残基的磷酸化状态。因此,MyBPC 的磷酸变体可以被设计为
根据需要增加或减少心肌收缩力。我们认为,阻碍 MyBPC 的主要障碍
作为一种潜在的新疗法的开发是对该分子机制作用的不完全理解。
具体来说,目前尚不清楚每个残基的磷酸化状态如何调节 MyBPC
增强功能(通过激活细丝)和抑制功能(通过限制细胞的活动性)的能力
分离的肌球蛋白头)。
因此,该项目的目标是 (1) 开发一个建模框架,用于确定特定站点如何
MyBPC 磷酸化影响收缩功能,(2) 使用肌节在动物水平验证模型
实验,以及(3)通过计算机结合来测试管道预测有效治疗策略的能力
计算机选择的突变体 MyBPC 的筛选和病毒传递。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART G CAMPBELL其他文献
STUART G CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART G CAMPBELL', 18)}}的其他基金
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10510011 - 财政年份:2022
- 资助金额:
$ 55.12万 - 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10640157 - 财政年份:2022
- 资助金额:
$ 55.12万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
10371076 - 财政年份:2019
- 资助金额:
$ 55.12万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10358783 - 财政年份:2017
- 资助金额:
$ 55.12万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
9398261 - 财政年份:2017
- 资助金额:
$ 55.12万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
9983135 - 财政年份:2017
- 资助金额:
$ 55.12万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10221767 - 财政年份:2017
- 资助金额:
$ 55.12万 - 项目类别:
Computational Pipeline for Identification of Disease-Causing Variants in Genes of the Cardiac Sarcomere
用于鉴定心脏肌节基因致病变异的计算流程
- 批准号:
10736459 - 财政年份:2017
- 资助金额:
$ 55.12万 - 项目类别:
Engineered Tissue for Biomechanical Phenotyping of Cardiomyopathy Patients
用于心肌病患者生物力学表型分析的工程组织
- 批准号:
8974854 - 财政年份:2014
- 资助金额:
$ 55.12万 - 项目类别:
相似海外基金
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 55.12万 - 项目类别:
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:
10712202 - 财政年份:2023
- 资助金额:
$ 55.12万 - 项目类别:
The natural release of unusual peptidoglycan fragments drives persistent Lyme disease symptoms in susceptible hosts
异常肽聚糖片段的自然释放导致易感宿主持续出现莱姆病症状
- 批准号:
10736544 - 财政年份:2023
- 资助金额:
$ 55.12万 - 项目类别:
Test of catestatin (CST) and its mimetic as a new therapy for type 2 diabetes (T2D)
儿茶素 (CST) 及其模拟物作为 2 型糖尿病 (T2D) 新疗法的测试
- 批准号:
10823055 - 财政年份:2023
- 资助金额:
$ 55.12万 - 项目类别:
Mechanisms Driving Enhanced Susceptibility of Females versus Males to High-Fat Diet-Induced Increases in High Blood Pressure
女性与男性相比,对高脂肪饮食引起的高血压的易感性增强的机制
- 批准号:
10714531 - 财政年份:2023
- 资助金额:
$ 55.12万 - 项目类别: