Establishing and reversing the functional consequences of Titin truncation mutations

建立并逆转肌联蛋白截断突变的功能后果

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Cardiomyopathies occur in ~1:200 individuals and are commonly caused by inheritance of variants in genes that encode proteins that regulate the sarcomere, the force-producing organelle of heart cells. Due to an incomplete understanding of variant pathogenicity and cardiomyopathy pathogenesis, physicians are currently limited in their ability to provide diagnoses, prognoses, and therapeutic options for cardiomyopathy patients. Variants in the TTN gene, which encodes the sarcomere protein titin, are the most frequently identified genetic lesion in dilated cardiomyopathy (DCM), which is characterized by heart chamber dilation, reduced contractile function, risk of sudden death, and progressive heart failure. The most frequent type of TTN variant identified in DCM is a truncation mutation that would be predicted to shorten TTN protein length and to reduce TTN protein quantities. Significantly, truncation variants localized to distal TTN structural domains are more pathogenic than those localized to proximal structural domains, but the mechanistic basis for this relationship is uncertain. It remains incompletely understood how TTN truncation variants cause DCM generally, which is compounded by our lack of understanding of the ‘length dependence’ of TTN variant pathogenicity. These knowledge gaps limit disease prognostication, biomarker identification, and therapeutic development for DCM patients. The central goal of our study is to define how disruptions in TTN length and dosage by TTN variants cause DCM, and exploit this knowledge to develop DCM therapeutics for TTN variant carriers. We hypothesize that healthy cardiac contractile function and structure depends on the regulation of TTN length and dosage, and that varying pathogenicity of TTN truncation can be explained by distinct structural and functional consequences associated with the specific site of truncation. In Aim 1, we will determine the functional consequences of TTN truncations across structural domains by harnessing 3-dimensional heart tissue models composed of human cardiomyocytes differentiated from induced pluripotent stem cells in which variants have been introduced by CRISPR-mediated genome editing. We will interrogate these models for tissue mechanical phenotypes (such as passive tension and Frank-Starling behavior), TTN protein length and levels (using specialized methods), proteostasis stress pathway responses (using immunoblotting), and mechanotransduction signaling and alternative splicing (using expression analysis and transcriptomics, respectively). In Aim 2, we will restore TTN protein levels using the recently developed method of CRISPR activation applied to DCM engineered heart tissue models for both evaluating the function of TTN isoforms generally and as a DCM proof-of-concept therapeutic. Through these Aims, we will gain critical new insights into the pathophysiology of DCM-associated TTN truncation variants, uncover features to explain the variable pathogenicity identified in DCM patients, and develop a therapeutic to target TTN directly. We anticipate this new knowledge will improve physicians’ capacity to diagnose, prognose, and treat patients with DCM due to TTN variants.
项目概要/摘要 心肌病发生在大约 1:200 的个体中,通常是由基因变异遗传引起的,这些变异 编码调节肌节的蛋白质,肌节是心脏细胞的力产生细胞器,由于不完整。 目前,医生对变异致病性和心肌病发病机制的了解还有限 他们为变异型心肌病患者提供诊断、预后和治疗选择的能力。 TTN 基因编码肌节蛋白肌联蛋白,是最常见的遗传性病变 扩张型心肌病(DCM),其特征是心室扩张、收缩功能降低、 DCM 中最常见的 TTN 变异类型是猝死和进行性心力衰竭的风险。 预计会缩短 TTN 蛋白长度并减少 TTN 蛋白数量的截断突变。 值得注意的是,位于远端 TTN 结构域的截短变异比那些本地化的截短变异更具致病性。 局限于近端结构域,但这种关系的机制基础仍然不确定。 不完全了解 TTN 截断变异通常如何导致 DCM,而我们的缺乏使情况变得更加复杂 这些知识差距限制了对 TTN 变异致病性“长度依赖性”的理解。 DCM 患者的预测、生物标志物识别和治疗开发。 我们的研究旨在确定 TTN 变体对 TTN 长度和剂量的破坏如何导致 DCM,并利用这一点 为 TTN 变异携带者开发 DCM 疗法的知识。 收缩功能和结构取决于TTN长度和剂量的调节,并且不同 TTN 截短的致病性可以通过相关的不同结构和功能后果来解释 在目标 1 中,我们将确定 TTN 截断的功能后果。 通过利用由人类心肌细胞组成的 3 维心脏组织模型来跨结构域 与诱导多能干细胞不同,诱导多能干细胞中通过 CRISPR 介导引入了变异体 我们将询问这些模型的组织机械表型(例如被动张力)。 和 Frank-Starling 行为)、TTN 蛋白质长度和水平(使用专门方法)、蛋白质稳态应激 途径反应(使用免疫印迹),以及机械转导信号和选择性剪接(使用 分别是表达分析和转录组学)。在目标 2 中,我们将使用 最近开发的 CRISPR 激活方法应用于 DCM 工程心脏组织模型 通过这些总体评估 TTN 亚型的功能以及作为 DCM 概念验证治疗的功能。 目标是,我们将对 DCM 相关 TTN 截短变异的病理生理学获得重要的新见解, 揭示特征来解释 DCM 患者中发现的可变致病性,并开发一种治疗方法 我们预计这一新知识将提高医生诊断、预测、 并治疗因 TTN 变异而导致的扩张型心肌病 (DCM) 患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STUART G CAMPBELL其他文献

STUART G CAMPBELL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STUART G CAMPBELL', 18)}}的其他基金

Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
  • 批准号:
    10640157
  • 财政年份:
    2022
  • 资助金额:
    $ 56.61万
  • 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
  • 批准号:
    10371076
  • 财政年份:
    2019
  • 资助金额:
    $ 56.61万
  • 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
  • 批准号:
    9903433
  • 财政年份:
    2019
  • 资助金额:
    $ 56.61万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    10358783
  • 财政年份:
    2017
  • 资助金额:
    $ 56.61万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    9398261
  • 财政年份:
    2017
  • 资助金额:
    $ 56.61万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    9983135
  • 财政年份:
    2017
  • 资助金额:
    $ 56.61万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    10221767
  • 财政年份:
    2017
  • 资助金额:
    $ 56.61万
  • 项目类别:
Computational Pipeline for Identification of Disease-Causing Variants in Genes of the Cardiac Sarcomere
用于鉴定心脏肌节基因致病变异的计算流程
  • 批准号:
    10736459
  • 财政年份:
    2017
  • 资助金额:
    $ 56.61万
  • 项目类别:
Engineered Tissue for Biomechanical Phenotyping of Cardiomyopathy Patients
用于心肌病患者生物力学表型分析的工程组织
  • 批准号:
    8974854
  • 财政年份:
    2014
  • 资助金额:
    $ 56.61万
  • 项目类别:

相似国自然基金

记忆再巩固中去甲肾上腺素能系统在药物依赖戒断后潜伏心理渴求中的作用
  • 批准号:
    82001404
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
肾上腺素能受体SNPs及PWV、CBP对射血分数保留心衰的发病及药物敏感性的影响
  • 批准号:
    81471402
  • 批准年份:
    2014
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quorum Sensing Regulation of EHEC Virulence Genes
肠出血性大肠杆菌毒力基因的群体感应调控
  • 批准号:
    10384063
  • 财政年份:
    2023
  • 资助金额:
    $ 56.61万
  • 项目类别:
A role for cardiomyocyte pannexin 1 in non-ischemic heart failure
心肌细胞pannexin 1在非缺血性心力衰竭中的作用
  • 批准号:
    10680109
  • 财政年份:
    2023
  • 资助金额:
    $ 56.61万
  • 项目类别:
Chromogranin A is an aging risk factor
嗜铬粒蛋白 A 是衰老的危险因素
  • 批准号:
    10667265
  • 财政年份:
    2023
  • 资助金额:
    $ 56.61万
  • 项目类别:
PUFA metabolism for prevention and treatment of TMD pain: an interdisciplinary, translational approach.
PUFA 代谢预防和治疗 TMD 疼痛:一种跨学科的转化方法。
  • 批准号:
    10820840
  • 财政年份:
    2023
  • 资助金额:
    $ 56.61万
  • 项目类别:
A full spectrum rational approach to identify antiarrhythmic agents targeting IKs Channels
识别针对 IK 通道的抗心律失常药物的全谱理性方法
  • 批准号:
    10734513
  • 财政年份:
    2023
  • 资助金额:
    $ 56.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了