Signaling in cell expansion and morphogenesis
细胞扩张和形态发生中的信号传导
基本信息
- 批准号:9901546
- 负责人:
- 金额:$ 47.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-25 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcclimatizationActinsAffectAgricultureAnabolismArabidopsisAreaAtomic Force MicroscopyBiochemicalBiochemical PathwayBiologicalBiological ModelsCalciumCalcium SignalingCell MaintenanceCell SizeCell WallCell membraneCell physiologyCellsCellular StructuresCharacteristicsConflict (Psychology)CuesCytoskeletonDevelopmentEnvironmentEquilibriumEventExhibitsExposure toExtracellular MatrixGene ExpressionGoalsGrowthHomeostasisIndividualLightLinkMass Spectrum AnalysisMeasurementMechanicsMediatingMembrane PotentialsMethodsMicrofluidicsMicrotubulesModelingMolecularMorphogenesisOrganOrganismPathway interactionsPhosphotransferasesPlant RootsPlantsPlayProcessPropertyProteomicsRecoveryRegulationRegulatory PathwayResearchRoleRoot TipSalineScourgeSeriesSignal PathwaySignal TransductionSodium ChlorideStressStructureSystemTimeTissuesUnited States National Institutes of HealthVesicleViolenceWaterWorkbasebiological adaptation to stressbiological systemscell growthcell injuryenvironmental changehigh resolution imagingimaging approachinsightmechanical propertiesmutantorgan growthphosphoproteomicspressurepreventreceptorresponserho GTP-Binding Proteinssensory systemspatiotemporaltraffickinguptake
项目摘要
Project Summary
The integrity of cells is tightly controlled to keep organisms alive in the face of environmental change. The
normal process of growth, however, requires that cells partly disrupt cellular structures that provide stability.
These conflicting cellular priorities create challenges for cells in balancing integrity and extensibility. The root
of Arabidopsis is adept at dynamically regulating growth in response to stressful environments such as salinity
and provides a model developmental system where growth is localized to a specific region of the organ that is
accessible to high-resolution imaging. Recent work has revealed that cell integrity during salt stress is
maintained through the mechano-sensitive receptor-like kinase FERONIA. Identification of this essential
regulatory pathway provides opportunities to understand the mechanism cells use to integrate information on
cellular mechanics into decisions that control the biosynthesis of the extracellular matrix, which determines the
growth potential of cells.
Current understanding of how growth is organized in plants has largely focused on cellular contexts where tip-
growth is predominant and wall biosynthesis is localized to a discrete focal area in the cell. This process is
thought to be distinct from the major mode of cell growth in organs where delivery of new wall materials occurs
in a distributed manner across the cell. New work presented here identifies an essential function for the
FERONIA (FER) kinase in regulating the mechanical properties of the wall and cell integrity under salt stress.
These findings suggest that dynamic regulation of wall biosynthesis by mechanical cues may be necessary to
maintain cell integrity during stress.
The project aims to elucidate the cellular mechanisms by which salinity disrupts cell integrity and the role of
FERONIA in reorganizing the biosynthesis of the extracellular matrix to permit growth while maintaining cell
integrity. To achieve this goal we will use high-resolution imaging approaches including light and force
measurements and advanced proteomic methods that enable molecular insight into the biochemical pathways
that link wall mechanics to intracellular signaling, cytoskeletal dynamics and ECM biosynthesis. Specifically
we aim to 1) Understand the role of FER in regulating vesicle trafficking and dynamical properties of the actin
and microtubule-based cytoskeleton to understand how these processes affect delivery of cargo for wall
biosynthesis during stress. 2) FER-dependent intracellular calcium transients will be used as beacons of
signaling activity to determine the cell-autonomy of FER function with respect to cell integrity and vesicle
trafficking. 3) Quantitative phosphoproteomics will identify signaling components that directly interact with FER
and the Rho-GTPase from Plants (ROPs) to link receptor activity to wall biosynthesis and calcium signaling.
The proposed research is significant as it will advance our understanding of cellular homeostasis mechanisms
that integrate mechanical and environmental stress cues using root growth as a model.
项目摘要
细胞的完整性受到严格控制,以使生物体在环境变化时保持活力。这
但是,正常生长过程要求细胞部分破坏提供稳定性的细胞结构。
这些相互矛盾的细胞优先级在平衡完整性和可扩展性方面给细胞带来了挑战。根
拟南芥的善于响应压力环境(例如盐度)动态调节生长
并提供了一个模型发展系统,其中生长本地化与器官的特定区域
可访问高分辨率成像。最近的工作表明,盐胁迫期间的细胞完整性是
通过机械敏感的受体样激酶Feronia维持。识别这个必需品
监管途径提供了了解细胞用于整合信息的机制的机会
细胞力学变成控制细胞外基质生物合成的决策,这决定了
细胞的生长潜力。
当前对植物中生长如何组织的理解主要集中在细胞的情况下
生长主要是主导,壁生物合成位于细胞中的离散焦点区域。这个过程是
被认为与发生新壁材料的器官的主要细胞生长方式不同
以分布式的方式跨过细胞。这里介绍的新工作确定了
Feronia(FER)激酶在调节盐应激下壁和细胞完整性的机械性能中。
这些发现表明,机械提示对壁生物合成的动态调节可能是必要的
在压力期间保持细胞完整性。
该项目旨在阐明盐度破坏细胞完整性和作用的细胞机制
Feronia在重组细胞外基质的生物合成以允许生长的同时维持细胞
正直。为了实现这一目标,我们将使用包括光和力在内的高分辨率成像方法
测量和晚期蛋白质组学方法,可以使分子洞察生化途径
将壁力学与细胞内信号传导,细胞骨架动力学和ECM生物合成联系起来。具体来说
我们的目的是1)了解FER在调节囊泡运输和肌动蛋白的动力学特性中的作用
和基于微管的细胞骨架,以了解这些过程如何影响墙的货物的交付
压力期间的生物合成。 2)依赖FER的细胞内钙瞬变将用作信标
信号传导活性以确定FER功能相对于细胞完整性和囊泡的细胞自治
贩运。 3)定量磷酸蛋白质组学将识别直接与FER相互作用的信号成分
以及从植物(ROP)到受体活性与壁生物合成和钙信号传导的Rho-GTPase。
拟议的研究很重要,因为它将提高我们对细胞稳态机制的理解
使用根生长作为模型整合了机械和环境应力提示。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell wall mechanics: Some new twists
细胞壁力学:一些新的变化
- DOI:10.1016/j.bpj.2022.02.017
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Weizbauer, Renate A.;Cook, Douglas D.
- 通讯作者:Cook, Douglas D.
Tethering of cellulose synthase to microtubules dampens mechano-induced cytoskeletal organization in Arabidopsis pavement cells.
- DOI:10.1038/s41477-022-01218-7
- 发表时间:2022-09
- 期刊:
- 影响因子:18
- 作者:Schneider, Rene;Ehrhardt, David W.;Meyerowitz, Elliot M.;Sampathkumar, Arun
- 通讯作者:Sampathkumar, Arun
TRANVIA (TVA) facilitates cellulose synthase trafficking and delivery to the plasma membrane.
TRAVIA (TVA) 促进纤维素合酶运输并递送至质膜。
- DOI:10.1073/pnas.2021790118
- 发表时间:2021
- 期刊:
- 影响因子:11.1
- 作者:Vellosillo,Tamara;Dinneny,JoséR;Somerville,ChrisR;Ehrhardt,DavidW
- 通讯作者:Ehrhardt,DavidW
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSE R DINNENY其他文献
JOSE R DINNENY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSE R DINNENY', 18)}}的其他基金
Signaling in cell expansion and morphogenesis
细胞扩张和形态发生中的信号传导
- 批准号:
9291390 - 财政年份:2017
- 资助金额:
$ 47.91万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
7133001 - 财政年份:2005
- 资助金额:
$ 47.91万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
6994847 - 财政年份:2005
- 资助金额:
$ 47.91万 - 项目类别:
Cell Identity and differentiation in stimulus response
刺激反应中的细胞识别和分化
- 批准号:
7318870 - 财政年份:2005
- 资助金额:
$ 47.91万 - 项目类别:
相似海外基金
Thick and Thin Filament Dysfunction in Obese Heart Failure with Preserved Ejection Fraction
射血分数保留的肥胖性心力衰竭的粗细丝功能障碍
- 批准号:
10678204 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 47.91万 - 项目类别: