Estimating the genetic and environmental architecture of psychiatric disorders
估计精神疾病的遗传和环境结构
基本信息
- 批准号:9900864
- 负责人:
- 金额:$ 63.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-04 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAllelesArchitectureBehavioralBehavioral GeneticsBipolar DisorderBypassCodeComplexDataData SetDevelopmentDiseaseEnvironmentEnvironmental Risk FactorFamilyFamily StudyFundingFutureGene FrequencyGenesGeneticGenetic ResearchGenetic VariationGenetic studyGenomeGenomicsGoalsGrantHeritabilityIndividualInfluentialsInvestmentsLeadMajor Depressive DisorderManicMeasuresMental disordersMethodologyMethodsMinorModelingPartner in relationshipSamplingSchizophreniaSiblingsSingle Nucleotide PolymorphismSoftware ToolsSourceTrans-Omics for Precision MedicineTwin Multiple BirthTwin StudiesVariantWorkbasebiobankcase controlcausal variantdesigngene environment interactiongenetic approachgenetic architecturegenetic pedigreegenetic variantgenome-wideinsightlarge datasetsmodel developmentnovelnovel strategiespsychiatric genomicspsychogeneticsrare variantrisk varianttooltraitwhole genome
项目摘要
PROJECT SUMMARY
Understanding the genetic and environmental architecture of traits has been one of the central goals of
behavioral genetics over the last fifty years. Traditional approaches using twins and families have shown that
most traits, including psychiatric disorders, are highly heritable. More recently, methods that estimate
heritability (h2) from single nucleotide polymorphisms (SNPs) in unrelated individuals (h2SNP) have
demonstrated the importance of common variants to the genetic variation underlying complex traits. In turn,
the realization that common variants are responsible for substantial trait heritability has motivated continued
investment in large whole-genome datasets, which have allowed the discovery of thousands of SNPs reliably
associated with complex traits. In the midst of this deluge of data, however, fundamental questions about the
genetic and environmental architecture of traits remain unanswered, and new methodological approaches that
leverage increasingly large whole-genome datasets are needed to answer them.
In this Renewal application, we build on our previous methodological work to answer four high-level questions
about the genetic and environmental architecture of complex traits. First, estimates of h2SNP for psychiatric
disorders remain lower than estimates of h2 from twin and family studies. How much of this “still missing”
heritability is due to rare risk variants? Using methods developed during the previous period of our grant, we
will provide the best estimates to date of the importance of rare versus common risk variants of schizophrenia,
bipolar disorder, and major depression. Second, there appears to be substantial overlap between common risk
alleles for psychiatric disorders such as schizophrenia and bipolar disorder. Do rare risk alleles overlap to the
same degree, or do they tend to be disorder-specific? We will use extensions of our previously developed
methods to help answer this question. Third, the availability of large whole-genome datasets is growing at an
unprecedented rate. Can this data be leveraged to answer fundamental questions about the importance of
genes and the environment, traditionally the domain of twin and family designs? We propose the development
of methodological approaches that use measured genetic data among relatives that exist in large datasets to
help answer old questions in new ways that bypass earlier limitations. Finally, it is crucial to understand factors
that can bias estimates and lead to incorrect conclusions. We show how assortative mating and gene-by-
environment interactions bias existing estimates of h2SNP, and we propose the development of models and
software tools that mitigate these biases. By project's end, we anticipate having tools that open up new vistas to
behavioral genetics research, allowing for a clearer understanding of the genetic and environmental
architecture of psychiatric disorders and other complex traits. Doing so will help guide future analytic and
investment decisions.
项目概要
了解性状的遗传和环境结构一直是该研究的中心目标之一
过去五十年来使用双胞胎和家庭的行为遗传学方法表明:
大多数特征,包括精神疾病,都是高度遗传的,最近出现了估计方法。
无关个体 (h2SNP) 中单核苷酸多态性 (SNP) 的遗传力 (h2)
常见变异对遗传变异的重要性反过来证明了潜在的复杂性状。
人们继续认识到常见变异对大量性状遗传力负有责任
对大型全基因组数据集的投资,这使得能够可靠地发现数千个 SNP
然而,在海量的数据中,存在着一些与复杂特征相关的基本问题。
性状的遗传和环境结构仍然没有答案,新的方法论方法
需要利用越来越大的全基因组数据集来回答这些问题。
在此更新应用程序中,我们在之前的方法论工作的基础上回答了四个高级问题
关于复杂性状的遗传和环境结构,首先,h2SNP 对精神病学的估计。
疾病仍然低于双胞胎和家庭研究中 h2 的估计值,其中有多少“仍然缺失”。
遗传性是由于罕见的风险变异造成的吗?使用我们在上一阶段资助期间开发的方法,我们
将提供迄今为止对精神分裂症的罕见风险变异与常见风险变异的重要性的最佳估计,
其次,双相情感障碍和重度抑郁症之间似乎存在大量重叠。
精神分裂症和双相情感障碍等精神疾病的等位基因是否与罕见的风险等位基因重叠?
相同程度,还是它们往往是特定于疾病的?我们将使用我们之前开发的扩展
第三,大型全基因组数据集的可用性正在快速增长。
能否利用这些数据来回答有关重要性的基本问题。
基因和环境,传统上是双胞胎和家庭设计的领域,我们建议发展?
使用大型数据集中存在的亲属之间测量的遗传数据来进行方法学方法
帮助以新的方式回答旧问题,绕过早期的限制。最后,了解因素至关重要。
这可能会导致估计偏差并导致错误的结论。我们展示了选型交配和基因之间的关系。
环境相互作用使 h2SNP 的现有估计存在偏差,我们建议开发模型和
减轻这些偏见的软件工具,我们预计会有一些工具可以为我们打开新的前景。
行为遗传学研究,可以更清楚地了解遗传和环境
精神疾病和其他复杂特征的结构将有助于指导未来的分析和研究。
投资决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Charles Keller其他文献
Matthew Charles Keller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Charles Keller', 18)}}的其他基金
Causes and consequences of mental disorders: The environmental and genetic influences of parents on offspring.
精神障碍的原因和后果:父母对后代的环境和遗传影响。
- 批准号:
10665036 - 财政年份:2022
- 资助金额:
$ 63.95万 - 项目类别:
Understanding the links between parental and adolescent substance use:complementary natural experiments using the children of twins design
了解父母和青少年物质使用之间的联系:使用双胞胎设计的补充自然实验
- 批准号:
10798001 - 财政年份:2022
- 资助金额:
$ 63.95万 - 项目类别:
Understanding the links between parental and adolescent substance use:complementary natural experiments using the children of twins design
了解父母和青少年物质使用之间的联系:使用双胞胎设计的补充自然实验
- 批准号:
10615585 - 财政年份:2022
- 资助金额:
$ 63.95万 - 项目类别:
Estimating the genetic and environmental architecture of psychiatric disorders
估计精神疾病的遗传和环境结构
- 批准号:
10159130 - 财政年份:2013
- 资助金额:
$ 63.95万 - 项目类别:
Estimating the frequencies and population specificities of risk alleles
估计风险等位基因的频率和群体特异性
- 批准号:
8773616 - 财政年份:2013
- 资助金额:
$ 63.95万 - 项目类别:
Estimating the frequencies and population specificities of risk alleles
估计风险等位基因的频率和群体特异性
- 批准号:
8611972 - 财政年份:2013
- 资助金额:
$ 63.95万 - 项目类别:
Estimating the genetic and environmental architecture of psychiatric disorders
估计精神疾病的遗传和环境结构
- 批准号:
10376051 - 财政年份:2013
- 资助金额:
$ 63.95万 - 项目类别:
Estimating the frequencies and population specificities of risk alleles
估计风险等位基因的频率和群体特异性
- 批准号:
8481107 - 财政年份:2013
- 资助金额:
$ 63.95万 - 项目类别:
Estimating the frequencies and population specificities of risk alleles
估计风险等位基因的频率和群体特异性
- 批准号:
9181336 - 财政年份:2013
- 资助金额:
$ 63.95万 - 项目类别:
Evolutionary Roles of Homozygosity & Copy Number Variation in Mental Disorders
纯合性的进化作用
- 批准号:
8394943 - 财政年份:2010
- 资助金额:
$ 63.95万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 63.95万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别: