New models and therapeutic approaches in alveolar rhabdomyosarcoma
肺泡横纹肌肉瘤的新模型和治疗方法
基本信息
- 批准号:9899960
- 负责人:
- 金额:$ 38.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAlveolar RhabdomyosarcomaAnimal ModelAutomobile DrivingBiological ModelsBiologyCRISPR/Cas technologyCell CountCell physiologyCellsChildChromosomal translocationClinicalComplexDevelopmentDiseaseDrug ScreeningEmbryonal RhabdomyosarcomaEventExperimental Animal ModelFDA approvedFOXO1A geneGene FusionGenesGoalsGrowthHeadHumanHuman Cell LineHuman GeneticsImageLabelLeadMalignant NeoplasmsModelingMolecularMusMutationNeoplasm MetastasisOncogenicOutcomePAX3 genePAX7 genePathway interactionsPatientsPharmaceutical PreparationsPredispositionRelapseResearchRhabdomyosarcomaRoleSurvival RateTechnologyTestingTherapeuticTimeUnited StatesValidationWorkXenograft ModelXenograft procedureZebrafishcell typechildhood sarcomaexperimental studyimaging approachimaging modalityin vivoin vivo Modelinnovationmalignant muscle neoplasmneoplastic cellnovelnovel therapeuticsoutcome forecastpreclinical efficacysarcomascreeningsuccesssurvival outcometargeted treatmenttherapeutic developmenttool developmenttranscription factortranslational impacttumortumor growth
项目摘要
PROJECT SUMMARY (30 lines)
Alveolar rhabdomyosarcoma (ARMS) is a common and aggressive muscle cancer that affects hundreds of
children annually in the United States. ARMS are pathognomonic with oncogenic chromosomal translocations
between the PAX genes and the fork-head transcription factor (FOXO1). Yet, the pathways that the PAX3/7-
FOXO1 transcription factors modulate, the tumor cells of origin, and the therapeutic vulnerabilities that arise in
ARMS cells is still unclear, largely due to lack of precision animal models that accurately recapitulate the same
translocation fusion events found in human ARMS. The long-term goal of our work is to uncover therapeutically
relevant pathways that drive ARMS growth. The overall objective of this application is to develop zebrafish
models of ARMS to identify therapeutic vulnerabilities that can be exploited clinically. Our central hypothesis is
that worse survival outcomes in PAX3-FOXO1+ ARMS are reflected in differences in cells of origin, elevated
numbers of molecular defined tumor-propagating cells (TPCs), and predisposition to metastasis. The feasibility
of our approach is supported by our work in using zebrafish to model a wide range of human cancers, recent
optimization of Crispr/CAS9 approaches to create patient-specific translocations using CRE/Lox, and our
successful high-content imaging screening approach to identify FDA approved drugs with efficacy in curbing
growth of other RMS subtypes. The rationale for our research is that there are few good experimental animal
models that accurately mimic the underlying genetics of human ARMS, obviating our ability to define how
specific oncogenic fusions drive cancer growth. This work is significant because it will uncover divergent
cellular mechanisms that account for differences in the clinical manifestation of PAX3/7-FOXO1+ ARMS,
identify new therapies to treat ARMS, and provide new modeling approaches for translocation+ cancers, all
expressed goals outlined in PA-16-251 supported by the Cancer Moonshot Initiative. Aim 1 will characterize
differences in PAX3/7-FOXO1-induced ARMS using innovative zebrafish models, testing our hypothesis that
fusion+ ARMS have inherent differences in proliferation and cell(s)-of-origin. Aim 2 will assess PAX3/7-FRKH
for differential effects on modulating metastasis and tumor propagating potential, testing our hypothesis that
PAX3-FOXO1+ ARMS do worse clinically because they have elevated TPC numbers and metastatic capacity.
Aim 3 will use an innovative high-content imaging screen to identify FDA-approved drugs that kill TPCs and
suppress growth of human ARMS. With respect to outcomes, our research will develop much-needed precision
animals models of ARMS and identify key differences in PAX3/7-FOXO1+ ARMS including likely differences in
cell-of-origin, TPCs, and metastatic capacity, providing explanation of why PAX3-FOXO1+ ARMS do worse
clinically. Our work will also identify novel therapies to kill TPCs in human patient derived xenografts (PDX).
This work is expected to have a positive translational impact by demonstrating the pre-clinical efficacy of
targeting TPCs in human ARMS and identifying new therapies for the treatment of this devastating cancer.
项目摘要(30行)
牙槽横纹肌肉瘤(ARM)是一种常见和侵略性的肌肉癌,影响了数百种
每年在美国的儿童。手臂是病原体,具有致癌染色体易位
在PAX基因和叉头转录因子(FOXO1)之间。但是,PAX3/7-的途径
FOXO1转录因子调节,原始肿瘤细胞以及出现的治疗脆弱性
武器细胞仍然不清楚,这主要是由于缺乏精确概括相同的精确动物模型
在人武器中发现的易位融合事件。我们工作的长期目标是揭露治疗
相关的途径,驱动武器生长。该应用程序的总体目的是开发斑马鱼
识别可以在临床上利用的治疗漏洞的武器模型。我们的中心假设是
PAX3-FOXO1+手臂中较差的生存结果反映在原始细胞中的差异,升高
分子定义的肿瘤传播细胞(TPC)的数量和转移的易感性。可行性
我们的方法得到了我们在使用斑马鱼对广泛的人类癌症建模的工作的支持,最近
优化CRISPR/CAS9方法使用CRE/LOX创建特定于患者的易位,我们
成功的高含量成像筛选方法,以识别FDA批准的药物具有疗效
其他RMS亚型的增长。我们研究的基本原理是很少有好的实验动物
准确模仿人类手臂的基本遗传学的模型,从而避免了我们定义的能力
特定的致癌融合驱动癌症的生长。这项工作很重要,因为它会发现不同的
细胞机制解释了PAX3/7-FOXO1+ ARM的临床表现差异的差异,
确定治疗武器的新疗法,并为易位+癌症提供新的建模方法
在PA-16-251中概述了癌症月球倡议支持的目标。 AIM 1将表征
使用创新的斑马鱼模型,PAX3/7-FOXO1诱导的手臂的差异,检验了我们的假设
融合+手臂在增殖和细胞 - 原始素中具有固有的差异。 AIM 2将评估PAX3/7-FRKH
对于调节转移和肿瘤传播潜力的差异影响,我们检验了我们的假设
PAX3-FOXO1+手臂在临床上的情况更糟,因为它们的TPC数量升高和转移能力。
AIM 3将使用创新的高含量成像屏幕来识别FDA批准的药物,以杀死TPC和
抑制人类武器的成长。关于结果,我们的研究将发展出急需的精度
动物的武器模型,并确定PAX3/7-FOXO1+手臂的关键差异,包括可能的差异
Or-Of-Of-Of-of-of-of-of-of-tpc和转移能力,提供了为什么pax3-foxo1+手臂更糟的解释
临床。我们的工作还将确定在人类衍生异种移植物(PDX)中杀死TPC的新型疗法。
预计这项工作将通过证明临床前的疗效产生积极的翻译影响
针对人类手臂中的TPC并确定用于治疗这种毁灭性癌症的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Michael Langenau其他文献
David Michael Langenau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Michael Langenau', 18)}}的其他基金
Oncogenic Drivers of Rhabdomyosarcoma Cell State, Cancer Stem Cells and Metastasis
横纹肌肉瘤细胞状态、癌症干细胞和转移的致癌驱动因素
- 批准号:
10658091 - 财政年份:2023
- 资助金额:
$ 38.54万 - 项目类别:
Developing preclinical xenograft models in zebrafish.
在斑马鱼中开发临床前异种移植模型。
- 批准号:
10334672 - 财政年份:2022
- 资助金额:
$ 38.54万 - 项目类别:
Developing preclinical xenograft models in zebrafish.
在斑马鱼中开发临床前异种移植模型。
- 批准号:
10578692 - 财政年份:2022
- 资助金额:
$ 38.54万 - 项目类别:
Stem cell self-renewal programs in rhabdomyosarcoma
横纹肌肉瘤的干细胞自我更新计划
- 批准号:
10321242 - 财政年份:2018
- 资助金额:
$ 38.54万 - 项目类别:
New models and therapeutic approaches in alveolar rhabdomyosarcoma
肺泡横纹肌肉瘤的新模型和治疗方法
- 批准号:
10375518 - 财政年份:2018
- 资助金额:
$ 38.54万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
10225314 - 财政年份:2017
- 资助金额:
$ 38.54万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
9383339 - 财政年份:2017
- 资助金额:
$ 38.54万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
9751256 - 财政年份:2017
- 资助金额:
$ 38.54万 - 项目类别:
Immune Compromised Zebrafish for Cell Transplantation
用于细胞移植的免疫受损斑马鱼
- 批准号:
10454455 - 财政年份:2013
- 资助金额:
$ 38.54万 - 项目类别:
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
New models and therapeutic approaches in alveolar rhabdomyosarcoma
肺泡横纹肌肉瘤的新模型和治疗方法
- 批准号:
10375518 - 财政年份:2018
- 资助金额:
$ 38.54万 - 项目类别:
The role of cMET in satellite cells during muscle regeneration
cMET 在肌肉再生过程中卫星细胞中的作用
- 批准号:
8594554 - 财政年份:2013
- 资助金额:
$ 38.54万 - 项目类别:
The role of cMET in satellite cells during muscle regeneration
cMET 在肌肉再生过程中卫星细胞中的作用
- 批准号:
8705247 - 财政年份:2013
- 资助金额:
$ 38.54万 - 项目类别: