Stem cell self-renewal programs in rhabdomyosarcoma
横纹肌肉瘤的干细胞自我更新计划
基本信息
- 批准号:10321242
- 负责人:
- 金额:$ 37.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-10 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnimalsBiological MarkersCancer ModelCell CountCell divisionCell physiologyCellsChemosensitizationChildClinicalDataDiagnosisDiseaseDrug TargetingEmbryonal RhabdomyosarcomaGoalsGrantGrowthHumanImageImpairmentIn VitroLabelMalignant NeoplasmsModelingMolecularMonomeric GTP-Binding ProteinsMusMuscleNeoplasm MetastasisOperative Surgical ProceduresOutcomePathway interactionsPatientsPharmaceutical PreparationsProcessRHOA geneRefractoryRelapseResearchResolutionRhabdomyosarcomaRoleSignal PathwaySignal TransductionSurvival RateTestingTherapeuticTimeTransgenic OrganismsTumor ExpansionTumor MarkersUnited StatesUnresectableValidationWNT Signaling PathwayWorkXenograft procedureZebrafishbasecell growthcell typechemotherapyexperimental studygain of functionhigh riskhuman modelin vivoinnovationinsightirradiationloss of functionmalignant muscle neoplasmneoplastic cellnew therapeutic targetnovelnovel strategiesnovel therapeuticspatient derived xenograft modelplanar cell polaritypre-clinicalpreclinical efficacyprogramsself-renewalstem cell divisionstem cell self renewaltargeted treatmenttranslational impacttreatment strategytumortumor growth
项目摘要
PROJECT SUMMARY
Rhabdomyosarcoma (RMS) is a devastating malignancy of muscle that is diagnosed in hundreds of children
and adults annually in the USA. Survival rates are less than 30% in patients with unresectable, metastatic, or
relapsed RMS, with continued tumor growth being maintained by a small number of self-renewing, tumor-
propagating cells (TPCs). Yet, to date, targeted approaches to kill TPCs or to differentiate them into non-
proliferative, differentiated RMS cell types have not been developed. The long-term goal of our work is to
uncover therapeutically relevant pathways that drive RMS growth through their regulatory effects on TPCs. The
overall objective of this application is to determine the extent to which non-canonical Wnt/Planar Cell Polarity
(Wnt/PCP) signaling regulates TPC self-renewal and can be targeted to inhibit RMS growth. Our central
hypothesis is that Van Gogh-like 2 (Vangl2), a core regulator of the Wnt/PCP signaling pathway, modulates
self-renewal and growth of RMS TPCs. We also hypothesize that Vangl2 expression is confined to TPCs and
can be used to isolate and characterize these cells. Our preliminary data indicate that Vangl2 and Wnt/PCP
signaling regulate TPC self-renewal in both zebrafish and human RMS. VANGL2 inactivation leads to reduced
TPC number, decreased tumor cell growth, and elevated differentiation in human RMS cells both in vitro and in
vivo using mouse xenografts. Fluorescent transgenic zebrafish models of embryonal RMS also showed that
Vangl2 expression enriches for self-renewing TPCs, providing novel approaches to dynamically visualize these
cells in live animals and to quantify effects of altering Wnt/PCP signaling on self-renewal. The rationale for our
work is that VANGL2 is active in a vast majority of human RMS and is required for continued tumor growth and
self-renewal, suggesting that therapeutic strategies based on VANGL2 inhibition would benefit a large fraction
of high-risk patients. Aim 1 will assess the role for Wnt/PCP signaling in RMS growth and self-renewal in a
fluorescent-transgenic zebrafish model and patient-derived xenografts, testing our hypothesis that Vangl2 and
the Wnt/PCP pathway regulate self-renewal and expansion of TPCs in RMS. Aim 2 will characterize Vangl2 as
a marker of TPCs in both zebrafish and human RMS, providing unprecedented access to dynamically visualize
roles for the Wnt/PCP pathway in regulating self-renewal and cell fate choices following cell division. Aim 3
will elucidate the effector pathways downstream of VANGL2 and Wnt/PCP signaling, testing our working
hypothesis that VANGL2 drives self-renewal through the activation of RHOA small GTPase signaling. Our work
will uncover the molecular pathways by which VANGL2 and the Wnt/PCP pathway drive human RMS growth
and self-renewal. Such insights will provide new biomarkers for assessing drug effects on TPCs and will likely
identify novel drug targets beyond VANGL2 for the treatment of RMS. Our work is predicted to have a large
positive translational impact, advancing our understanding of processes that control self-renewal in cancer and
providing pre-clinical efficacy of targeting VANGL2 to suppress growth of patient derived xenografts.
项目概要
横纹肌肉瘤 (RMS) 是一种毁灭性的肌肉恶性肿瘤,数百名儿童被诊断出患有这种疾病
和成人每年在美国。无法切除、转移或患有癌症的患者的生存率低于 30%
复发的 RMS,肿瘤持续生长是由少数自我更新的肿瘤细胞维持的
增殖细胞(TPC)。然而,迄今为止,还没有针对性的方法来杀死 TPC 或将其区分为非 TPC。
尚未开发出增殖、分化的 RMS 细胞类型。我们工作的长期目标是
揭示通过对 TPC 的调节作用推动 RMS 生长的治疗相关途径。这
此应用程序的总体目标是确定非规范 Wnt/平面细胞极性的程度
(Wnt/PCP) 信号传导调节 TPC 自我更新,并可靶向抑制 RMS 生长。我们的中央
假设 Van Gogh-like 2 (Vangl2) 是 Wnt/PCP 信号通路的核心调节因子,可调节
RMS TPC 的自我更新和生长。我们还假设 Vangl2 表达仅限于 TPC
可用于分离和表征这些细胞。我们的初步数据表明 Vangl2 和 Wnt/PCP
信号传导调节斑马鱼和人类 RMS 中 TPC 的自我更新。 VANGL2失活导致减少
TPC 数量、肿瘤细胞生长减少以及人 RMS 细胞在体外和体内的分化增加
体内使用小鼠异种移植物。胚胎 RMS 荧光转基因斑马鱼模型还表明
Vangl2 表达丰富了自我更新的 TPC,提供了动态可视化这些 TPC 的新方法
活体动物细胞并量化改变 Wnt/PCP 信号传导对自我更新的影响。我们的理由
研究表明,VANGL2 在绝大多数人类 RMS 中都很活跃,并且是肿瘤持续生长所必需的
自我更新,表明基于 VANGL2 抑制的治疗策略将在很大程度上受益
的高危患者。目标 1 将评估 Wnt/PCP 信号在 RMS 生长和自我更新中的作用
荧光转基因斑马鱼模型和患者来源的异种移植物,检验了我们的假设,即 Vangl2 和
Wnt/PCP 通路调节 RMS 中 TPC 的自我更新和扩展。目标 2 将 Vangl2 描述为
斑马鱼和人类 RMS 中 TPC 的标记,提供前所未有的动态可视化途径
Wnt/PCP 通路在细胞分裂后调节自我更新和细胞命运选择中的作用。目标 3
将阐明 VANGL2 和 Wnt/PCP 信号传导下游的效应器通路,测试我们的工作
假设 VANGL2 通过激活 RHOA 小 GTP 酶信号来驱动自我更新。我们的工作
将揭示 VANGL2 和 Wnt/PCP 途径驱动人类 RMS 生长的分子途径
和自我更新。这些见解将为评估药物对 TPC 的影响提供新的生物标志物,并且可能会
确定 VANGL2 以外的治疗 RMS 的新药物靶点。我们的工作预计会有很大
积极的转化影响,增进我们对控制癌症自我更新过程的理解
提供靶向 VANGL2 抑制患者来源异种移植物生长的临床前功效。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-cell imaging of human cancer xenografts using adult immunodeficient zebrafish.
- DOI:10.1038/s41596-020-0372-y
- 发表时间:2020-09
- 期刊:
- 影响因子:14.8
- 作者:Yan C;Do D;Yang Q;Brunson DC;Rawls JF;Langenau DM
- 通讯作者:Langenau DM
Insights into pediatric rhabdomyosarcoma research: Challenges and goals
- DOI:10.1002/pbc.27869
- 发表时间:2019-10-01
- 期刊:
- 影响因子:3.2
- 作者:Yohe, Marielle E.;Heske, Christine M.;Langenau, David M.
- 通讯作者:Langenau, David M.
Single-cell imaging of T cell immunotherapy responses in vivo.
- DOI:10.1084/jem.20210314
- 发表时间:2021-10-04
- 期刊:
- 影响因子:0
- 作者:Yan C;Yang Q;Zhang S;Millar DG;Alpert EJ;Do D;Veloso A;Brunson DC;Drapkin BJ;Stanzione M;Scarfò I;Moore JC;Iyer S;Qin Q;Wei Y;McCarthy KM;Rawls JF;Dyson NJ;Cobbold M;Maus MV;Langenau DM
- 通讯作者:Langenau DM
Single-cell analysis and functional characterization uncover the stem cell hierarchies and developmental origins of rhabdomyosarcoma.
- DOI:10.1038/s43018-022-00414-w
- 发表时间:2022-08
- 期刊:
- 影响因子:22.7
- 作者:Wei, Yun;Qin, Qian;Yan, Chuan;Hayes, Madeline N.;Garcia, Sara P.;Xi, Haibin;Do, Daniel;Jin, Alexander H.;Eng, Tiffany C.;McCarthy, Karin M.;Adhikari, Abhinav;Onozato, Maristela L.;Spentzos, Dimitrios;Neilsen, Gunnlaugur P.;Iafrate, A. John;Wexler, Leonard H.;Pyle, April D.;Suva, Mario L.;Dela Cruz, Filemon;Pinello, Luca;Langenau, David M.
- 通讯作者:Langenau, David M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Michael Langenau其他文献
David Michael Langenau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Michael Langenau', 18)}}的其他基金
Oncogenic Drivers of Rhabdomyosarcoma Cell State, Cancer Stem Cells and Metastasis
横纹肌肉瘤细胞状态、癌症干细胞和转移的致癌驱动因素
- 批准号:
10658091 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Developing preclinical xenograft models in zebrafish.
在斑马鱼中开发临床前异种移植模型。
- 批准号:
10334672 - 财政年份:2022
- 资助金额:
$ 37.77万 - 项目类别:
Developing preclinical xenograft models in zebrafish.
在斑马鱼中开发临床前异种移植模型。
- 批准号:
10578692 - 财政年份:2022
- 资助金额:
$ 37.77万 - 项目类别:
New models and therapeutic approaches in alveolar rhabdomyosarcoma
肺泡横纹肌肉瘤的新模型和治疗方法
- 批准号:
9899960 - 财政年份:2018
- 资助金额:
$ 37.77万 - 项目类别:
New models and therapeutic approaches in alveolar rhabdomyosarcoma
肺泡横纹肌肉瘤的新模型和治疗方法
- 批准号:
10375518 - 财政年份:2018
- 资助金额:
$ 37.77万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
10225314 - 财政年份:2017
- 资助金额:
$ 37.77万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
9383339 - 财政年份:2017
- 资助金额:
$ 37.77万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
9751256 - 财政年份:2017
- 资助金额:
$ 37.77万 - 项目类别:
Immune Compromised Zebrafish for Cell Transplantation
用于细胞移植的免疫受损斑马鱼
- 批准号:
10454455 - 财政年份:2013
- 资助金额:
$ 37.77万 - 项目类别:
相似国自然基金
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模拟增温对高寒草甸节肢动物“晨起”时间的影响及其生态学效应
- 批准号:32301391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三江源国家公园黄河源园区食草野生动物与放牧家畜冲突的强度、影响及未来情景
- 批准号:42371283
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别: