Mitophagy as a regulator of cardiac function in physiological and pathophysiological conditions
线粒体自噬作为生理和病理生理条件下心脏功能的调节剂
基本信息
- 批准号:9762156
- 负责人:
- 金额:$ 24.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAdvisory CommitteesAttenuatedAwardBrainCardiacCardiac Function StudyCardiac MyocytesCardiac developmentCardiomyopathiesCardiovascular DiseasesCardiovascular PhysiologyCause of DeathCommunicationComplementDataDeubiquitinating EnzymeDevelopmentDevelopment PlansDiseaseDown-RegulationEducational process of instructingEducational workshopEmbryoEnergy MetabolismEnergy-Generating ResourcesEnzymesExcisionExtramural ActivitiesFatty AcidsFunctional disorderFundingGeneticGlucoseGoalsGrantHeartHeart DiseasesHeart HypertrophyHeart failureIn VitroIntramural Research ProgramK-Series Research Career ProgramsK22 AwardKnockout MiceKnowledgeLeadershipLifeLinkMeasuresMediatingMembrane ProteinsMentorsMetabolicMitochondriaModelingMusMyocardial dysfunctionNational Heart, Lung, and Blood InstituteNerve DegenerationOuter Mitochondrial MembranePathologicPathway interactionsPerinatalPharmacologyPhasePhysiologicalPhysiologyPlayPreparationProgram DevelopmentProtein IsoformsProteomicsPublic HealthQuality ControlRegulationReporterResearchResearch PersonnelResearch ProposalsResearch TrainingRoleScientistStressTechniquesTestingTherapeuticTissuesTrainingUbiquitin-Conjugating EnzymesUnited States National Institutes of HealthVocational GuidanceWorkWritingbody systemcardiogenesiscareercareer developmentconstrictiondesignfatty acid oxidationfetalheart functionheart preservationin vivoin vivo monitoringinhibitor/antagonistinnovationinsightmeetingsmembermitochondrial autophagymitochondrial dysfunctionmitochondrial metabolismmouse modelnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsoxidationparkin gene/proteinperinatal periodpost-doctoral trainingpressurepreventprogramsresearch and developmentresponseskillssuccess
项目摘要
7. Project Summary
Mitochondria provide an essential source of energy and play an important role during cardiac development
and in heart failure progression. Cumulative evidence illustrates the importance of mitochondrial quality control
in cardiac function during fetal life and in the adult heart. This K22 application centers on a research proposal
to study the role of cardiac mitophagy, an important aspect of mitochondrial quality control, in both
physiological and pathophysiological conditions within the context of a career development program. The
program is designed to facilitate a successful transition from postdoctoral training to independent research.
These studies will be facilitated by my recently described mt-Keima mouse model to monitor in vivo cardiac
mitophagic flux, as well as the use of genetic Parkin deficient (a positive mitophagy regulator) and USP30
deficient (a negative mitophagy regulator) mouse models. This will be supplemented by detailed cardiac
functional analysis using murine models of transverse aortic constriction induced cardiomyopathy. In particular,
I will determine the role of mitophagy in perinatal cardiac mitochondrial maturation and during cardiac
pathological stresses, as well as test a specific USP30 inhibitor in stimulating cardiac mitophagy and in
attenuating progression of heart failure (Aim 1). It is increasingly recognized that mitophagy is critical for
mitochondrial plasticity and metabolic reprogramming during normal heart development and in various disease
conditions. I will further test the hypothesis that the rate limiting enzyme in fatty acid oxidation, CPT1a, may
regulate mitophagy. Using a cardiac specific CPT1a knockout mouse, I will assess whether CPT1a regulates
the mitochondrial perinatal metabolic transition and the adult mitophagic response that occurs following cardiac
stress (Aim 2). Completion of the proposed Research Strategy will produce critical insights into the role of
mitophagy in normal cardiovascular physiology and pathological conditions, and will fundamentally advance
our understanding of the interaction between mitochondrial metabolism and mitochondrial quality control in the
heart. This enhanced understanding of the role of mitophagy, USP30 and CPT1a in the heart should open
possibilities for harnessing these pathways for therapeutic potential. These studies will be initiated within the
NIH intramural program and completed during an extramural, independent phase.
Through this K22 Career Development Award proposal, I seek to systematically acquire additional
mentored research training and career development training at the NIH/NHLBI through a detailed Career
Development Plan designed to complement my current skill set, including additional formal training in cardiac
physiology and pathophysiology. With the continued support of members of my Advisory Committee, the K22
Career Development Award will establish a training framework to initiate the research program in preparation
for my independent career. A central part of the intramural phase of the K22 award will be my Advisory
Committee that will evaluate my progress on the proposed research and career development training as
outlined in the detailed Career Development Plan. The advisory committee composed of intramural and
extramural members will provide continuous guidance. The scientific training will support the proposed Specific
Aims through a combination of specialized course work and hands-on training to complete the proposed
innovative Research Strategy. Importantly, the techniques and approaches developed during the funding
period of the award will not only advance our understanding of physiological role of cardiac mitophagy, but also
allow for the successful completion of the proposed Research Strategy. This will establish the basis of my first
NIH R01 and additional independent funding applications.
I will also undertake extensive career and professional training in the intramural phase of this award to help
master academic challenges anticipated in the extramural phase of the award. Mentoring and teaching will be
complemented with training in management and leadership in the form of seminars and workshops. The
professional career development training also involves mentoring of junior scientists, participation in grant-
writing workshops, development of communication skills, networking at meetings, career counseling and
assessment coaching to prepare for my transition to independence and my long term goal of becoming a
successful independent investigator.
Cardiovascular disease represents the leading cause of death in the USA, understanding the mechanisms
regulating cardiac mitophagy that protect the heart from heart failure and cardiac hypertrophy could prove
invaluable to public health. Constitutive mitophagy is a homeostatic mechanism for maintaining mitochondrial
quality and global mitochondrial function not only in the heart, but also in other tissues. As my career develops,
I envision that I will use the insight I have gained from studying the function of cardiac mitophagy and apply this
knowledge to investigate the role of mitophagy in a variety of contexts in other organs and systems, particularly
in the brain, where I have demonstrated an important role of mitophagy in neuronal degeneration. In summary,
the proposed studies will illustrate the importance of mitophagy in the perinatal and adult heart. These insights
may provide the basis for novel therapeutic approaches in a wide variety of heart diseases. In addition, the
described career development plan will notably enhance my transition to academic independence and chances
for continued scientific success.
七、项目概要
线粒体提供重要的能量来源,在心脏发育过程中发挥重要作用
以及心力衰竭的进展。累积证据说明线粒体质量控制的重要性
影响胎儿时期和成人心脏的心脏功能。此 K22 申请以一项研究计划为中心
研究心脏线粒体自噬(线粒体质量控制的一个重要方面)在这两种疾病中的作用
职业发展计划背景下的生理和病理生理条件。这
该计划旨在促进从博士后培训到独立研究的成功过渡。
我最近描述的 mt-Keima 小鼠模型将促进这些研究,以监测体内心脏
线粒体自噬通量,以及使用遗传 Parkin 缺陷(正线粒体自噬调节因子)和 USP30
缺陷(负线粒体自噬调节因子)小鼠模型。这将得到详细的心脏信息的补充
使用横向主动脉缩窄诱发的心肌病小鼠模型进行功能分析。尤其,
我将确定线粒体自噬在围产期心脏线粒体成熟和心脏过程中的作用
病理应激,以及测试特定的 USP30 抑制剂刺激心脏线粒体自噬和
减缓心力衰竭的进展(目标 1)。人们越来越认识到线粒体自噬对于
正常心脏发育和各种疾病期间的线粒体可塑性和代谢重编程
状况。我将进一步检验脂肪酸氧化中的限速酶 CPT1a 的假设
调节线粒体自噬。使用心脏特异性 CPT1a 敲除小鼠,我将评估 CPT1a 是否调节
线粒体围产期代谢转变和成年后发生的线粒体自噬反应
压力(目标 2)。完成拟议的研究战略将对以下方面的作用产生重要的见解:
线粒体自噬在正常心血管生理和病理条件下的作用,将从根本上促进
我们对线粒体代谢和线粒体质量控制之间相互作用的理解
心。这增强了人们对线粒体自噬、USP30 和 CPT1a 在心脏中的作用的理解。
利用这些途径发挥治疗潜力的可能性。这些研究将在
NIH 校内项目并在校外独立阶段完成。
通过这个 K22 职业发展奖提案,我寻求系统地获得更多
通过详细的职业指导,在 NIH/NHLBI 进行研究培训和职业发展培训
旨在补充我当前技能的发展计划,包括额外的心脏方面的正式培训
生理学和病理生理学。在我的咨询委员会成员的持续支持下,K22
职业发展奖将建立一个培训框架,以启动准备中的研究计划
为了我的独立事业。 K22 奖校内阶段的核心部分将是我的咨询
委员会将评估我在拟议的研究和职业发展培训方面的进展
详细的职业发展计划中有概述。咨询委员会由校内和
校外成员将提供持续指导。科学培训将支持拟议的具体
旨在通过专业课程工作和实践培训相结合来完成建议的
创新的研究策略。重要的是,融资期间开发的技术和方法
获奖期间不仅将增进我们对心脏线粒体自噬的生理作用的理解,而且
允许成功完成拟议的研究战略。这将为我的第一个项目奠定基础
NIH R01 和其他独立资助申请。
我还将在该奖项的校内阶段进行广泛的职业和专业培训,以帮助
掌握奖项校外阶段预期的学术挑战。指导和教学将
并以研讨会和讲习班的形式进行管理和领导力培训。这
专业职业发展培训还包括对初级科学家的指导、参与资助项目
写作研讨会、沟通技巧发展、会议网络、职业咨询和
评估辅导,为我向独立的过渡和成为一名独立人士的长期目标做准备
成功的独立调查员。
心血管疾病是美国的首要死因,了解其机制
调节心脏线粒体自噬以保护心脏免受心力衰竭和心脏肥大的影响可能会被证明
对公共卫生来说是无价的。组成型线粒体自噬是维持线粒体功能的稳态机制
质量和整体线粒体功能不仅在心脏中,而且在其他组织中。随着我职业生涯的发展,
我设想我将利用从研究心脏线粒体自噬功能中获得的见解并将其应用
研究线粒体自噬在其他器官和系统的各种情况下的作用的知识,特别是
在大脑中,我证明了线粒体自噬在神经元变性中的重要作用。总之,
拟议的研究将说明线粒体自噬在围产期和成人心脏中的重要性。这些见解
可能为多种心脏病的新治疗方法提供基础。此外,
所述职业发展计划将显着增强我向学术独立的过渡和机会
为了持续的科学成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuo Sun其他文献
Nuo Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuo Sun', 18)}}的其他基金
Neddylation and mitophagy in cardiac aging
心脏衰老中的 Neddylation 和线粒体自噬
- 批准号:
10419019 - 财政年份:2022
- 资助金额:
$ 24.59万 - 项目类别:
Neddylation and mitophagy in cardiac aging
心脏衰老中的 Neddylation 和线粒体自噬
- 批准号:
10589832 - 财政年份:2022
- 资助金额:
$ 24.59万 - 项目类别:
Interplay between mitophagy and substrate utilization in heart failure progression
线粒体自噬和底物利用在心力衰竭进展中的相互作用
- 批准号:
10534749 - 财政年份:2021
- 资助金额:
$ 24.59万 - 项目类别:
相似海外基金
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 24.59万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 24.59万 - 项目类别:
Investigating the impact of physical activity in modulating PCOS risk among peripubertal females
调查体力活动对调节青春期前后女性 PCOS 风险的影响
- 批准号:
10591971 - 财政年份:2023
- 资助金额:
$ 24.59万 - 项目类别:
Immunometabolic signatures of BCG-induced neonatal trained immunity
BCG 诱导的新生儿训练免疫力的免疫代谢特征
- 批准号:
10664100 - 财政年份:2023
- 资助金额:
$ 24.59万 - 项目类别:
Exercise-induced Legacy Health Benefits on Cardiometabolic Risk Factors in Aging Adults with Prediabetes
运动对患有前驱糖尿病的老年人的心脏代谢危险因素的传统健康益处
- 批准号:
10353779 - 财政年份:2022
- 资助金额:
$ 24.59万 - 项目类别: