Robust Predictors of Mania and Psychosis
躁狂症和精神病的稳健预测因子
基本信息
- 批准号:9755521
- 负责人:
- 金额:$ 74.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-03 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
The purpose of the new funding opportunity announcement, RFA-OD-17-004 for Intensive
Longitudinal Analysis of Health Behaviors: Leveraging New Technologies To Understand Health Behaviors
(U01), is to establish a cooperative agreement network to collaboratively study factors that influence key health
behaviors in the dynamic environment of individuals, using intensive longitudinal data collection and analytic
methods. Importantly, progress has been slow and frustrating in translating knowledge of the brain to new and
more effective treatments for human brain diseases such as severe mental disorders. In fact, severe mental
disorders, which include psychotic disorders, are brain diseases that are not only devastating because they
result in severe disruptions that occur early in life, but, for many, the course of illness is progressive, leading to
chronic debilitation and early mortality. Thus the need to accelerate knowledge about the factors that trigger
(or increase or decrease the likelihood) of manic and psychotic episodes, and to translate this knowledge to
more effective treatment interventions, is critical. The primary goal of the proposed “Robust Predictors of
Mania and Psychosis” is to identify biological, environmental, and social factors that trigger dangerous
mental states, particularly mania and psychosis, in individuals known to be at risk for these conditions. The
eventual goal of this work is to provide quantifiable and predictable information that can be used to scaffold
biological observations and tailor intervention strategies to maximize efficacy at the individual level. We first
develop models to predict conventional clinical measures specific to psychosis and mania using (1) digital, low-
to-minimal burden interactions through smartphones and wearables (Aim 1), and (2) measures extracted from
face and voice during in-person clinical interactions (Aim 2), work which leverages existing data we have
already collected. We will next collect one hundred person-years of pseudo-continuous multivariate behavioral
data from one hundred individuals with a psychotic disorder, to further test and validate our early observations
in a wider array of individuals with affective and non-affective psychotic disorders, who are likely to experience
illness fluctuations within a one-year timeframe, employing several strategies to optimize participant
engagement (Aim 3). We will also perform, as a representative example, a study comparing sleep, energy
expenditure, and mania symptoms over time, using data obtained in the first three aims, to quantify how the
relationship between energy expenditure and energy perception varies across our study population in ways that
could have important consequences for health behaviors (Aim 4). The main goals of this project are thus to
acquire high quality, temporally dense behavioral, cognitive, and clinical data on an important cohort of young
adult patients, not only to facilitate future investigations linking these behavioral change points to
neurobiological processes but also as a precursor to more effective, targeted therapeutics, such as real-time
interventions that could be delivered based on dynamic factors in an individual's environment.
项目摘要/摘要
新的资助机会公告的目的,RFA-OD-17-004
健康行为的纵向分析:利用新技术了解健康行为
(U01)是建立一个合作协议网络,以协作研究影响关键健康的因素
使用密集的纵向数据收集和分析的个人动态环境中的行为
方法。重要的是,在将大脑知识转化为新的和
对人脑疾病(例如严重精神疾病)的更有效治疗。实际上,严重的精神障碍
包括精神病在内的疾病是脑部疾病,不仅是毁灭性的,因为它们
导致生命早期发生的严重破坏,但是对于许多人来说,疾病的进步过程是渐进的,导致
长期衰弱和早期死亡率。需要加速有关触发因素的知识
(或增加或减少躁狂和精神病发作的可能性),并将这些知识转化为
更有效的治疗干预措施至关重要。拟议的“强大预测指标的主要目标
躁狂和精神病”是为了确定触发危险的生物学,环境和社会因素
已知有可能患有这些疾病风险的个体,精神状态,尤其是躁狂症和精神病。
这项工作的最终目标是提供可量化且可预测的信息,可用于脚手架
生物学观察和裁缝干预策略,以最大程度地提高个人级别的效率。我们首先
开发模型,使用(1)数字,低 -
通过智能手机和可穿戴设备(AIM 1)和(2)提取的措施
面对面临床互动期间的面部和声音(AIM 2),利用我们拥有的现有数据的工作
已经收集了。接下来,我们将收集一百年的伪连续多元行为
来自一百个患有精神病的人的数据,以进一步测试和验证我们的早期观察
在各种各样的情感和非情感精神病患者中,他们可能会经历
疾病在一年的时间内发生,采用多种策略来优化参与者
参与(目标3)。作为代表性的例子,我们还将进行比较睡眠,能量的研究
使用前三个目的获得的数据,支出和躁狂症随着时间的流逝,以量化
能源消耗与我们研究人群之间的能量感知变化之间的关系,以
可能对健康行为产生重要的后果(AIM 4)。因此,该项目的主要目标是
在重要的年轻队列上获取高质量,暂时密集的行为,认知和临床数据
成年患者,不仅为了促进将这些行为改变点与
神经生物学过程,也是更有效,有针对性疗法的前体,例如实时
可以根据个人环境中的动态因素进行的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
JUSTIN T BAKER的其他基金
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:1057322510573225
- 财政年份:2021
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:1039242910392429
- 财政年份:2021
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Robust Predictors of Mania and Psychosis
躁狂症和精神病的稳健预测因子
- 批准号:1016486310164863
- 财政年份:2018
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Robust Predictors of Mania and Psychosis
躁狂症和精神病的稳健预测因子
- 批准号:99205449920544
- 财政年份:2018
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Robust Predictors of Mania and Psychosis
躁狂症和精神病的稳健预测因子
- 批准号:1057129810571298
- 财政年份:2018
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Modulation of the OCD neural network by conventional treatment
通过常规治疗调节强迫症神经网络
- 批准号:1059401310594013
- 财政年份:2015
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Modulation of the OCD neural network by conventional treatment
通过常规治疗调节强迫症神经网络
- 批准号:1041171010411710
- 财政年份:2015
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Frontoparietal Network Integrity and Risk for Psychosis
额顶网络完整性和精神病风险
- 批准号:90853759085375
- 财政年份:2014
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Frontoparietal Network Integrity and Risk for Psychosis
额顶网络完整性和精神病风险
- 批准号:93128779312877
- 财政年份:2014
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Frontoparietal Network Integrity and Risk for Psychosis
额顶网络完整性和精神病风险
- 批准号:87556958755695
- 财政年份:2014
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
相似国自然基金
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
互动视角下品牌数字人对消费者的影响研究:数字人的角色、虚实结合与情感策略的作用
- 批准号:72372057
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
地理场景与旅游情感的时空关联与影响机理研究
- 批准号:42301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“云带货”助农主播对消费者购买行为的影响机理研究:基于情感体验的视角
- 批准号:72302230
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:1050172010501720
- 财政年份:2022
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
The Effect of Acoustic Enhancement of Slow-Wave Activity on Cognitive Control and Emotional Reactivity in Young Adults with Anxiety and Depression Symptoms
慢波活动的声学增强对患有焦虑和抑郁症状的年轻人的认知控制和情绪反应性的影响
- 批准号:1067886610678866
- 财政年份:2022
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
An RDoC Approach to Perinatal Affective Disorders: The Role of Neuroactive Steroids and Potential Threat
RDoC 治疗围产期情感障碍的方法:神经活性类固醇的作用和潜在威胁
- 批准号:1059555110595551
- 财政年份:2022
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
- 批准号:1056976910569769
- 财政年份:2022
- 资助金额:$ 74.02万$ 74.02万
- 项目类别:
Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
- 批准号:1070961410709614
- 财政年份:2022
- 资助金额:$ 74.02万$ 74.02万
- 项目类别: