Quantitative Language and Facial Expression Phenotyping of Chronic Pain

慢性疼痛的定量语言和面部表情表型

基本信息

  • 批准号:
    10569769
  • 负责人:
  • 金额:
    $ 60.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-23 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Chronic pain is still a clinical diagnosis based on location, symptom report, and clinical expertise. Despite recent efforts to delineate specific and evidence-based criteria to diagnose different chronic pain conditions, substantial heterogeneity persists among chronic pain patients often within the same clinical pain syndrome (e.g., low-back pain). The lack of quantitative and reliable measures to diagnose chronic pain and the related heterogeneity that ensues are major obstacles to medical care for patients and for research studies. Chronic pain patients are often managed using a “trial and error” approach as targeted and precise treatment is not possible without quantitative biomarkers, like glucose levels for diabetes. In addition, patient-related variability in analgesic response is thought to be one of the main reasons why the current therapeutic interventions for chronic pain are unsatisfactory, as 20% of US adults live in chronic pain and 8% of US adults are disabled from chronic pain. Natural language processing analyzes semantic and emotional content, syntactic structure, and complexity of speech; audio-visual processing analyzes voice acoustics and facial expressions. These tools have recently been shown to be powerful quantitative and reliable biomarkers for discriminating between patients with psychiatric conditions like schizophrenia and major depression, and in predicting long-term outcomes, like the development of psychosis in high-risk groups. A parallel can be drawn between chronic pain and chronic mental illness like major depressive disorder, as both conditions are diagnosed based on subjective report of symptoms, diagnostic criteria, and clinical expertise. In addition, both conditions are closely associated with negative affect which has been corroborated by preclinical research and brain imaging data showing a critical role of the limbic brain in the pathophysiology of these conditions. Therefore, it stands to reason that natural language and audio- visual processing may serve as biomarkers to phenotype different types of chronic pain patients and to measure patients' responses to treatment. This proposal will study the ability of language analysis and audio-visual processing tools in discriminating between different types of patients with chronic pain (i.e., discriminant validity) in Aim1, and the ability of these tools to predict analgesic response of chronic low-back pain (CLBP) patients receiving spinal cord stimulation (SCS) (i.e., predictive validity) in Aim 2. In both aims patients will be video recorded during an interview where they speak about their pain or mood (for major depressive disorder patients). Language, speech, and facial expression features will be extracted from the recordings and used in multivariate machine learning models. In Aim 1 natural language and audio-visual processing patterns will be compared between patients with 3 conditions: (1) musculoskeletal CLBP, (2) musculoskeletal CLBP with clinically significant negative affect, and (3) moderate major depressive disorder. In Aim 2, natural language and audio-visual processing patterns will be used to identify responders and non-responders to SCS.
项目摘要 慢性疼痛仍然是基于位置,SYM报告和临床专业知识的临床诊断。尽管最近 努力描述特定和循证标准以诊断不同的慢性疼痛状况,实质性 在同一临床疼痛综合征中,慢性疼痛患者中的异质性持续存在(例如,低背部 疼痛)。缺乏诊断慢性疼痛和相关异质性的定量和可靠措施 这需要患者和研究研究的主要障碍。慢性疼痛患者是 通常,没有“反复试验”方法作为针对性和精确治疗是不可能的 定量生物标志物,例如用于糖尿病的葡萄糖水平。另外,镇痛的患者相关变异性 反应被认为是当前慢性疼痛治疗干预措施的主要原因之一 不满意的是,由于20%的美国成年人生活在慢性疼痛中,而美国有8%的成年人因慢性疼痛而残疾。 自然语言处理分析语义和情感内容,句法结构以及复杂性 演讲;视听处理分析语音声学和面部表情。这些工具最近有 我们被证明是强大的定量和可靠的生物标志物,可区分 精神分裂症和严重抑郁症等精神病疾病,并在预测长期结局时,例如 高风险群体的精神病发展。可以在慢性疼痛和慢性心态之间绘制平行 诸如主要抑郁症之类的疾病,因为这两种病症都是根据症状的主观报告诊断的, 诊断标准和临床专业知识。此外,这两种情况都与负面影响密切相关 通过临床前研究和大脑成像数据证实了这一点,显示了边缘的关键作用 这些疾病的病理生理学中的大脑。因此,有理由认为自然语言和音频 - 视觉处理可以用作表型的生物标志物,以不同类型的慢性疼痛患者并测量 患者对治疗的反应。 该建议将研究语言分析和视听处理工具的能力 在AIM1中不同类型的慢性疼痛患者(即判别有效性)之间 预测接受脊髓刺激的慢性低下痛疼痛(CLBP)患者的镇痛反应的工具 (scs)(即预测有效性)在目标2中。在两个目标中,患者将在面试中记录视频 他们谈论自己的疼痛或情绪(对于主要的抑郁症患者)。语言,言语和面部 表达功能将从录音中提取,并用于多元机器学习模型。在 AIM 1自然语言和视听处理模式将在3例患者之间进行比较 条件:(1)肌肉骨骼CLBP,(2)肌肉骨骼CLBP具有临床显着的负面影响,并且 (3)中度重度抑郁症。在AIM 2中,自然语言和视听处理模式将是 用于确定对SCS的响应者和非响应者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Paul Geha的其他基金

Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
  • 批准号:
    10657958
    10657958
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
  • 批准号:
    10709614
    10709614
  • 财政年份:
    2022
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Brain Structural Biomarkers of Risk and Resilience to Pain Chronification
疼痛风险和恢复能力的脑结构生物标志物
  • 批准号:
    10584169
    10584169
  • 财政年份:
    2022
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Cortical Mapping of Neuropathic Low Back Pain
神经性腰痛的皮质映射
  • 批准号:
    10040696
    10040696
  • 财政年份:
    2020
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Cortical Mapping of Neuropathic Low Back Pain
神经性腰痛的皮质映射
  • 批准号:
    10223454
    10223454
  • 财政年份:
    2020
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
  • 批准号:
    8679716
    8679716
  • 财政年份:
    2014
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
  • 批准号:
    8843824
    8843824
  • 财政年份:
    2014
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
  • 批准号:
    9455634
    9455634
  • 财政年份:
    2014
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:

相似国自然基金

航天低温推进剂加注系统气液状态声学监测技术研究
  • 批准号:
    62373276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
  • 批准号:
    52350039
  • 批准年份:
    2023
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
  • 批准号:
    82302874
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
海洋声学功能材料发展战略研究
  • 批准号:
    52342304
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    专项项目

相似海外基金

In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
  • 批准号:
    10677342
    10677342
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Connected Language and Speech Along the Spectrum of Alzheimer’s Disease and Related Dementias: Digital Assessment and Monitoring.
阿尔茨海默病和相关痴呆症范围内的互联语言和言语:数字评估和监测。
  • 批准号:
    10662754
    10662754
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
  • 批准号:
    10649994
    10649994
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别:
Vital capacity & airflow measurement for voice evaluation: A vortex whistle system
肺活量
  • 批准号:
    10737248
    10737248
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
    $ 60.95万
  • 项目类别: