Quantitative Language and Facial Expression Phenotyping of Chronic Pain

慢性疼痛的定量语言和面部表情表型

基本信息

  • 批准号:
    10569769
  • 负责人:
  • 金额:
    $ 60.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-23 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Chronic pain is still a clinical diagnosis based on location, symptom report, and clinical expertise. Despite recent efforts to delineate specific and evidence-based criteria to diagnose different chronic pain conditions, substantial heterogeneity persists among chronic pain patients often within the same clinical pain syndrome (e.g., low-back pain). The lack of quantitative and reliable measures to diagnose chronic pain and the related heterogeneity that ensues are major obstacles to medical care for patients and for research studies. Chronic pain patients are often managed using a “trial and error” approach as targeted and precise treatment is not possible without quantitative biomarkers, like glucose levels for diabetes. In addition, patient-related variability in analgesic response is thought to be one of the main reasons why the current therapeutic interventions for chronic pain are unsatisfactory, as 20% of US adults live in chronic pain and 8% of US adults are disabled from chronic pain. Natural language processing analyzes semantic and emotional content, syntactic structure, and complexity of speech; audio-visual processing analyzes voice acoustics and facial expressions. These tools have recently been shown to be powerful quantitative and reliable biomarkers for discriminating between patients with psychiatric conditions like schizophrenia and major depression, and in predicting long-term outcomes, like the development of psychosis in high-risk groups. A parallel can be drawn between chronic pain and chronic mental illness like major depressive disorder, as both conditions are diagnosed based on subjective report of symptoms, diagnostic criteria, and clinical expertise. In addition, both conditions are closely associated with negative affect which has been corroborated by preclinical research and brain imaging data showing a critical role of the limbic brain in the pathophysiology of these conditions. Therefore, it stands to reason that natural language and audio- visual processing may serve as biomarkers to phenotype different types of chronic pain patients and to measure patients' responses to treatment. This proposal will study the ability of language analysis and audio-visual processing tools in discriminating between different types of patients with chronic pain (i.e., discriminant validity) in Aim1, and the ability of these tools to predict analgesic response of chronic low-back pain (CLBP) patients receiving spinal cord stimulation (SCS) (i.e., predictive validity) in Aim 2. In both aims patients will be video recorded during an interview where they speak about their pain or mood (for major depressive disorder patients). Language, speech, and facial expression features will be extracted from the recordings and used in multivariate machine learning models. In Aim 1 natural language and audio-visual processing patterns will be compared between patients with 3 conditions: (1) musculoskeletal CLBP, (2) musculoskeletal CLBP with clinically significant negative affect, and (3) moderate major depressive disorder. In Aim 2, natural language and audio-visual processing patterns will be used to identify responders and non-responders to SCS.
项目概要 尽管最近,慢性疼痛仍然是基于位置、症状报告和临床专业知识的临床诊断。 努力制定具体的、基于证据的标准来诊断不同的慢性疼痛状况,实质性 同一临床疼痛综合征(例如,腰背痛)的慢性疼痛患者之间仍然存在异质性 疼痛)。缺乏定量和可靠的措施来诊断慢性疼痛和相关的异质性。 随之而来的是对患者的医疗护理和慢性疼痛患者的研究的主要障碍。 通常使用“试错”方法进行管理,因为如果不进行针对性和精确的治疗,就不可能实现 生物标志物,例如糖尿病的定量血糖水平此外,镇痛药与患者相关的变异性。 反应被认为是目前慢性疼痛治疗干预措施无效的主要原因之一 情况并不令人满意,因为 20% 的美国成年人生活在慢性疼痛中,8% 的美国成年人因慢性疼痛而致残。 自然语言处理结合了语义和情感内容、句法结构和复杂性 语音;视听处理聚合了语音声学和面部表情。 已被证明是区分患有以下疾病的患者的强大的定量和可靠的生物标志物 精神分裂症和重度抑郁症等精神疾病,以及预测长期结果,例如 高危人群中精神病的发生与慢性疼痛和慢性精神疾病之间存在相似之处。 像重度抑郁症这样的疾病,因为这两种情况都是根据症状的主观报告来诊断的, 此外,这两种情况都与负面情绪密切相关。 临床前研究和脑成像数据证实了边缘系统的关键作用 因此,自然语言和音频是大脑的病理生理学基础。 视觉处理可以作为生物标志物来对不同类型的慢性疼痛患者进行表型分析并测量 患者对治疗的反应。 该提案将研究语言分析和视听处理工具的区分能力 Aim1 中不同类型的慢性疼痛患者之间的差异(即判别有效性),以及这些患者的能力 预测接受脊髓刺激的慢性腰痛 (CLBP) 患者的镇痛反应的工具 目标 2 中的(SCS)(即预测有效性)。在这两个目标中,患者将在访谈期间进行视频录制,其中 他们谈论他们的痛苦或情绪(对于重度抑郁症患者) 语言、言语和面部表情。 表情特征将从录音中提取并用于多元机器学习模型。 目标 1 将比较患有 3 种疾病的患者之间的自然语言和视听处理模式 条件:(1) 肌肉骨骼 CLBP,(2) 具有临床显着负面影响的肌肉骨骼 CLBP,以及 (3) 中度重度抑郁症 在目标 2 中,自然语言和视听处理模式将受到影响。 用于识别 SCS 的响应者和非响应者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Geha其他文献

Paul Geha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Geha', 18)}}的其他基金

Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
  • 批准号:
    10657958
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
  • 项目类别:
Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
  • 批准号:
    10709614
  • 财政年份:
    2022
  • 资助金额:
    $ 60.95万
  • 项目类别:
Brain Structural Biomarkers of Risk and Resilience to Pain Chronification
疼痛风险和恢复能力的脑结构生物标志物
  • 批准号:
    10584169
  • 财政年份:
    2022
  • 资助金额:
    $ 60.95万
  • 项目类别:
Cortical Mapping of Neuropathic Low Back Pain
神经性腰痛的皮质映射
  • 批准号:
    10040696
  • 财政年份:
    2020
  • 资助金额:
    $ 60.95万
  • 项目类别:
Cortical Mapping of Neuropathic Low Back Pain
神经性腰痛的皮质映射
  • 批准号:
    10223454
  • 财政年份:
    2020
  • 资助金额:
    $ 60.95万
  • 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
  • 批准号:
    8679716
  • 财政年份:
    2014
  • 资助金额:
    $ 60.95万
  • 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
  • 批准号:
    8843824
  • 财政年份:
    2014
  • 资助金额:
    $ 60.95万
  • 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
  • 批准号:
    9455634
  • 财政年份:
    2014
  • 资助金额:
    $ 60.95万
  • 项目类别:

相似国自然基金

鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
  • 批准号:
    62301355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
  • 批准号:
    12304486
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
  • 批准号:
    12304492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
  • 批准号:
    82302198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
  • 批准号:
    12371422
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
  • 批准号:
    10677342
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
  • 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
  • 项目类别:
Connected Language and Speech Along the Spectrum of Alzheimer’s Disease and Related Dementias: Digital Assessment and Monitoring.
阿尔茨海默病和相关痴呆症范围内的互联语言和言语:数字评估和监测。
  • 批准号:
    10662754
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
  • 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
  • 批准号:
    10649994
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
  • 项目类别:
Identifying acoustic-level and language-specific sensory processing mechanisms
识别声学级别和语言特定的感觉处理机制
  • 批准号:
    10711229
  • 财政年份:
    2023
  • 资助金额:
    $ 60.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了