Preventable Hospitalization in Dementia: The Impact of Neuropsychiatric Symptoms
痴呆症可预防的住院治疗:神经精神症状的影响
基本信息
- 批准号:8769634
- 负责人:
- 金额:$ 17.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdultAgeAggressive behaviorAgingAgitationAntipsychotic AgentsApplications GrantsAsthmaAttentionBenzodiazepinesBioinformaticsCaregiversCaringCharacteristicsClinicalClinical DataCodeCognition DisordersCommunitiesComorbidityDataData AnalysesDelusionsDementiaDevelopmentDiagnosisDistressDoctor of PhilosophyElderlyElectronic Health RecordEmergency CareEnvironmentFoundationsFundingFutureGeriatric PsychiatryGeriatricsGoalsHealthHealth PolicyHealth Services ResearchHealth systemHealthcare SystemsHospitalizationIndividualInstitutesInstitutionalizationInternistInterventionIntervention StudiesIntervention TrialKale - dietaryKnowledgeLeadLeadershipLightLiteratureLocationLogistic RegressionsLogisticsManuscriptsMedicalMental HealthMental Health ServicesMental disordersMentorsMentorshipMethodsMichiganModelingNatural Language ProcessingOutpatientsPatient CarePatientsPharmaceutical PreparationsPhenotypePopulationPrevalencePrimary Health CareProviderPsychiatristPsychotic DisordersPublic HealthQualifyingResearchResearch PersonnelResearch TrainingResourcesRiskRisk AssessmentRisk FactorsRuralSignal TransductionSleeplessnessSourceStratificationSurveysSymptomsTrainingTraining ActivityTranslatingUniversitiesUrinary tract infectionValidationVeteransVisitWorkWritingabstractingbehavior changecareercase controlclinical caredesigneffective interventionevidence basegeriatric mental healthhigh riskimprovedinnovationmedication compliancemeetingsneuropsychiatrypatient populationprofessorprogramspublic health relevancerepositoryskillsstatisticstool
项目摘要
DESCRIPTION (provided by applicant): Older adults with dementia are at increased risk of hospitalization when compared to adults without dementia of similar age and medical comorbidity. The increased risk of hospitalization extends to potentially preventable hospitalization (PPH) for conditions such as a urinary tract infection or asthma exacerbation, suggesting difficulty in outpatient management of patients with dementia. Neuropsychiatric symptoms (NPS) of dementia such as agitation or delusions likely account for a significant amount of this risk, given their prevalence and potential to cause caregiver distress. While there are effective interventions for patients and caregivers to reduce NPS, the profile of patients that
could benefit the most from intervention, therefore reducing their hospitalization risk, is unknown. Through the coordinated program of mentorship, didactics, and research that I propose, I will develop the advanced skills to derive and apply administrative, claims, and clinical encounter data to prospectively identify those patients with dementia at highest risk for hospitalization. Development of this patient-level risk phenotype means that future interventions to reduce hospitalization can then be prospectively matched to the patients most likely to benefit, a development of critical public health importance given both financial and geriatric work
force constraints. Over the next four years, my short-term training goals include: (1) address gaps in my formal research training, specifically: (a) to conduct observational analyses using large-scale claims and administrative data; (b) to derive clinical data from the electronic health record using natural language processing; and (c) to apply advanced methods of data analysis for risk prediction; (2) train in presentations, manuscript writing, and grantsmanship that culminate with a R01 proposal; (3) establish further connections with potential collaborators in the University of Michigan (UM) Pepper Center and broader community of aging researchers, national geriatrics and geriatric psychiatry communities, and the Beeson Scholar community; and (4) engage in leadership development with an emphasis on skills to lead a research team, mentor junior investigators, and communicate findings in research and clinical care settings. These short-term goals will be paired with research aims that focus on elaborating the PPH risk profile for patients with dementia. Such research objectives can only be achieved when: (1) full clinical characteristics are available for the at-risk (i.e., non-hospitalized) population, includig (2) NPS data, which are rarely captured in standard administrative claims data. These criteria are uniquely met in the Veterans Affairs healthcare system, which has one of the nation's most advanced electronic health records (EHR). Using a national dementia case repository (N=269,565) from which I will draw matched cases (patients with dementia + PPH) and controls (non-hospitalized patients with dementia). Aim 1 will use claims and administrative data to explore patient, treatment, and facility risk factors associated with PPH. Aim 2 will use natural language processing to derive NPS from EHR clinical encounter notes and then characterize the association of NPS with PPH. Using the risk phenotype described in Aims 1 and 2, Aim 3 will develop logistic risk-prediction models to prospectively identify patients with dementia at highest risk for PPH. In subsequent grant proposals I will validate this risk- prediction model in other healthcare systems and prospectively pair the assessment tool with an evidence- based dementia intervention to reduce hospitalization. My long-term career goals are to: (1) establish myself as independent investigator and national leader in geriatric mental health services research; (2) develop a programmatic line of funded health services research that develops risk-stratification models for late-life mental health and cognitive disorders; (3) translate knowledge from these research endeavors to improve the targeting and impact of future interventions research and health system delivery strategies; and (4) contribute broadly to the care of older adults by training and mentoring future clinical researchers in late-life mental health disorders. I am an Assistant Professor and geriatric psychiatrist at the University of Michigan, where I am also currently completing a MSc in Health and Healthcare Research, which provides an excellent background in health services research for clinicians. With this combination of clinical expertise and foundational training in health services research, I am uniquely qualified to undertake the advanced training activities outlined in this proposal, while UM affords the ideal environment in which to pursue this work. My primary mentor (Helen Kales, MD) and co-mentor (Frederic Blow, PhD) are national leaders in geriatric mental health who have used observational data to answer questions of national significance. My Advisory Panel includes Constantine Lyketsos, MD, MHS, an internationally-recognized expert in NPS and dementia care, and Kenneth Langa, MD, PhD, an internist, former Beeson Scholar, and renowned expert in using survey and secondary data to inform our understanding of dementia. Consultants include David Hanauer, MD, MS, an expert in bioinformatics and natural language processing, and Rodney Hayward, MD, a leader in risk assessment and intervention- targeting. My advisory team paired with resources of Michigan's Pepper Center, CTSA, and multi-disciplinary Institute for Healthcare Policy and Innovation make this the ideal environment in which to complete the proposed training activities.
描述(由申请人提供):与年龄相仿且没有合并症的痴呆症成年人相比,患有痴呆症的老年人住院的风险更高。住院风险的增加延伸到了因尿路感染或哮喘恶化等情况而可能可预防的住院(PPH),这表明痴呆症患者的门诊管理存在困难。痴呆症的神经精神症状(NPS),如激越或妄想,可能是这种风险的很大一部分原因,因为它们的患病率很高,并且有可能导致护理人员的痛苦。虽然患者和护理人员可以采取有效的干预措施来减少 NPS,但患者的情况
能否从干预中获益最多,从而降低住院风险,目前尚不清楚。通过我提出的指导、教学和研究的协调计划,我将培养先进的技能来获取和应用管理、索赔和临床数据,以前瞻性地识别那些住院风险最高的痴呆症患者。这种患者水平风险表型的发展意味着未来减少住院治疗的干预措施可以前瞻性地与最有可能受益的患者相匹配,考虑到财务和老年工作,这一发展对公共卫生具有重要意义
力的约束。 在接下来的四年里,我的短期培训目标包括:(1)解决我的正式研究培训中的差距,特别是:(a)使用大规模声明和管理数据进行观察分析; (b) 使用自然语言处理从电子健康记录中获取临床数据; (c) 应用先进的数据分析方法进行风险预测; (2) 进行演讲、手稿写作和资助方面的培训,最终形成 R01 提案; (3) 与密歇根大学 (UM) Pepper 中心和更广泛的老龄化研究人员社区、国家老年病学和老年精神病学社区以及 Beeson 学者社区的潜在合作者建立进一步的联系; (4) 参与领导力发展,重点培养领导研究团队、指导初级研究人员以及在研究和临床护理环境中交流研究结果的技能。 这些短期目标将与重点阐述痴呆症患者 PPH 风险概况的研究目标相结合。只有在以下情况下才能实现此类研究目标:(1) 可以获得高危人群(即非住院人群)的完整临床特征,包括 (2) NPS 数据,这些数据很少在标准行政索赔数据中捕获。退伍军人事务部医疗保健系统独特地满足了这些标准,该系统拥有全国最先进的电子健康记录 (EHR) 之一。使用国家痴呆症病例库(N = 269,565),我将从其中抽取匹配病例(痴呆症+ PPH 患者)和对照(非住院痴呆症患者)。目标 1 将使用索赔和管理数据来探索与 PPH 相关的患者、治疗和设施风险因素。目标 2 将使用自然语言处理从 EHR 临床记录中导出 NPS,然后表征 NPS 与 PPH 的关联。利用目标 1 和 2 中描述的风险表型,目标 3 将开发逻辑风险预测模型,以前瞻性地识别 PPH 风险最高的痴呆患者。在后续的拨款提案中,我将在其他医疗保健系统中验证这一风险预测模型,并前瞻性地将评估工具与基于证据的痴呆症干预措施相结合,以减少住院治疗。 我的长期职业目标是:(1)使自己成为老年心理健康服务研究的独立研究者和国家领导者; (2) 制定资助卫生服务研究的规划路线,为晚年心理健康和认知障碍开发风险分层模型; (3) 转化这些研究成果的知识,以提高未来干预研究和卫生系统提供战略的针对性和影响力; (4) 通过培训和指导未来的晚年心理健康障碍临床研究人员,为老年人的护理做出广泛贡献。我是密歇根大学的助理教授和老年精神病学家,目前我还在该大学完成健康和医疗保健研究硕士学位,这为临床医生提供了良好的健康服务研究背景。凭借卫生服务研究方面的临床专业知识和基础培训的结合,我拥有独特的资格来开展本提案中概述的高级培训活动,而密西根大学为开展这项工作提供了理想的环境。我的主要导师(医学博士海伦·卡尔斯)和共同导师(弗雷德里克·布洛博士)是国家老年心理健康领域的领导者,他们利用观察数据来回答具有国家意义的问题。我的顾问小组包括康斯坦丁·莱克索斯 (Constantine Lyketsos)(医学博士、MHS),一位国际公认的 NPS 和痴呆症护理专家;以及肯尼思·兰加 (Kenneth Langa)(医学博士、哲学博士),一位内科医生、前比森学者,也是使用调查和二手数据来传达我们的理解的著名专家痴呆症。顾问包括生物信息学和自然语言处理专家 David Hanauer(医学博士、理学硕士)和风险评估和干预目标领域的领导者 Rodney Hayward(医学博士)。我的咨询团队与密歇根州胡椒中心、CTSA 和多学科医疗保健政策与创新研究所的资源相结合,使这里成为完成拟议培训活动的理想环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONOVAN T MAUST其他文献
DONOVAN T MAUST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONOVAN T MAUST', 18)}}的其他基金
The Impact of Alzheimer’s Disease and Related Dementias on Nursing Home Care and Quality for Persons with Serious Mental Illness
阿尔茨海默病和相关痴呆症对严重精神疾病患者的疗养院护理和质量的影响
- 批准号:
10803736 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
Prescribing without a guide: A national study of psychotropic and opioid polypharmacy among persons living with dementia
在没有指导的情况下开药:一项关于痴呆症患者精神药物和阿片类药物复方用药的全国研究
- 批准号:
10608057 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Prescribing without a guide: A national study of psychotropic and opioid polypharmacy among persons living with dementia
在没有指导的情况下开药:一项关于痴呆症患者精神药物和阿片类药物复方用药的全国研究
- 批准号:
10337351 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Addressing inappropriate benzodiazepine prescribing among older Veterans
解决老年退伍军人中不当使用苯二氮卓类药物的问题
- 批准号:
9653887 - 财政年份:2018
- 资助金额:
$ 17.51万 - 项目类别:
Patient, Caregiver, and Regional Drivers of Potentially Inappropriate Medical Care for Dementia: Building the Foundation for State Dementia Policy
痴呆症医疗护理可能不适当的患者、护理人员和地区驱动因素:为国家痴呆症政策奠定基础
- 批准号:
10090545 - 财政年份:2018
- 资助金额:
$ 17.51万 - 项目类别:
Addressing inappropriate benzodiazepine prescribing among older Veterans
解决老年退伍军人中不当使用苯二氮卓类药物的问题
- 批准号:
10186531 - 财政年份:2018
- 资助金额:
$ 17.51万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别: