Ultrafast Laser Phonosurgery for Biomaterial Localization in Scarred Vocal Folds
超快激光声外科手术用于疤痕声带生物材料定位
基本信息
- 批准号:9751242
- 负责人:
- 金额:$ 49.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAffectAirAmericanAnimal ModelAnimalsAreaBiocompatible MaterialsBiocompatible Materials TestingCanis familiarisCheek structureCicatrixClinicClinicalClinical DataCollagenCoupledCustomDataDevelopmentDysphoniaEducational process of instructingEndoscopyEpithelialFiberFibrosisGeometryGoalsHamstersHumanHyaluronic AcidHydrogelsImageImage AnalysisImpairmentInflammationInjectableInjectionsLamina PropriaLaryngoscopesLarynxLaser SurgeryLasersLocationMethodsMicroscopeMicroscopyModelingMorphologyOccupationsOperative Surgical ProceduresOpticsOutcomePatientsPerformancePhonationPhysiologic pulsePolyethylene GlycolsPreclinical TestingPropertyResistanceSiteSpeedSurfaceTechniquesTechnologyTestingTissue DifferentiationTissuesTranslatingVoiceVoice DisordersWorkWound Healingbaseclinical developmentcommon treatmentdesignergonomicsexperimental studyflexibilityfunctional improvementhealingimage guidedimage processingimaging capabilitiesimprovedin vivoin vivo Modelinnovationminiaturizeoptical fiberoptical imagingoptimal treatmentspre-clinicalpressurepreventprototyperesponseresponse to injurysuccesstoolvibrationviscoelasticityvisual feedbackvocal cord
项目摘要
Vocal fold scarring is a major cause of voice disorders like dysphonia, affecting an estimated 2 to 6 million people
in the US alone. Vocal fold scarring results from the replacement of the vibratory superficial lamina propria (SLP)
with stiff collagenous scar tissue. The modified viscoelastic properties of the SLP impairs vocal fold’s vibration
and results in poor phonation. Over the last decade, injectable biomaterials have been investigated as a means
to restore the viscoelasticity of scarred vocal folds. Unfortunately, poor localization due to increased resistance
of biomaterial flow in stiff scar tissue adversely affects repeatable and reliable outcomes.
To address this critical issue, we hypothesize that voids created by ultrafast laser pulses focused below the
surface at the scar site will aid biomaterial injection and localization in the desired location. We base our
hypothesis on a) the unique ability of ultrafast lasers to non-invasively create sub-surface cuts in bulk tissue, b)
the fact that biomaterials preferentially flow through the path of least resistance, c) ex vivo experiments that
resulted in reduced injection pressures and successful biomaterial localization in voids created by focused
ultrafast laser pulses in scarred tissue, and d) Preliminary in vivo surgery experiments that resulted in long lasting
biomaterial localization inside the ablated voids in healthy tissue with no detectable fibrosis (no scarring) around
the void. To demonstrate the said hypothesis, we will develop larynx-specific, image guided ultrafast laser probes
and test our surgery method in vivo using small (hamster) and large (canine) animal models.
We will advance our goals in this project through three Specific Aims: 1) quantify the healing response of
tissue to ultrafast laser ablation and characterize the void formation and biomaterial injection techniques in vivo
in scar tissues using a table-top microscope and a proven hamster cheek pouch scar model, 2) design and
develop larynx-specific ultrafast laser surgery probes that will be capable of sub-surface ablation in large animals
(and eventually in human patients) and provide visual feedback and guidance through non-linear microscopy,
and 3) evaluate the efficacy and ergonomics of the laser probes in a canine vocal fold scar model in vivo to
ultimately assess the impact of localization of injected biomaterials on the functional improvement of vocal folds.
Successful completion of the project will result in a new pre-clinically tested surgery tool that will enable controlled
and repeatable testing of injectable biomaterials for the treatment of scarred vocal folds in human patients.
This highly interdisciplinary project will provide innovations in achromatic, miniaturized optics, micro-
manufacturing, large air-core optical fiber technologies for ultrafast laser delivery and non-linear endoscopy, high
speed videostroboscopy image analysis and quantitative analysis methods for differentiating tissue
morphologies using non-linear microscopy.
声带疤痕是导致发声困难等声音障碍的主要原因,估计影响 2 至 600 万人
仅在美国,声带疤痕是由振动固有层浅层 (SLP) 置换引起的。
具有僵硬的胶原疤痕组织的 SLP 的粘弹性特性会损害声带的振动。
在过去的十年里,人们对可注射生物材料进行了研究。
不幸的是,由于阻力增加,定位不良。
僵硬疤痕组织中生物材料的流动会对可重复和可靠的结果产生不利影响。
为了解决这个关键问题,我们勇敢地面对超快激光脉冲在聚焦下方产生的空隙。
疤痕部位的表面将有助于生物材料注射和定位在所需位置。
假设 a) 超快激光在大块组织中非侵入性地产生亚表面切割的独特能力,b)
事实上,生物材料优先流过阻力最小的路径,c) 离体实验
导致注射压力降低,并成功地将生物材料定位在由聚焦产生的空隙中
疤痕组织中的超快激光脉冲,以及 d) 初步的体内手术实验,产生了持久的效果
生物材料定位在健康组织的消融空隙内,周围没有可检测到的纤维化(无疤痕)
为了证明上述假设,我们将开发喉部特异性的图像引导超快激光探头。
并使用小型(仓鼠)和大型(犬)动物模型在体内测试我们的手术方法。
我们将通过三个具体目标推进我们在该项目中的目标:1)量化治疗反应
组织超快激光消融并表征体内空隙形成和生物材料注射技术
使用台式显微镜和经过验证的仓鼠颊囊疤痕模型在疤痕组织中,2) 设计和
开发喉部特异性超快激光手术探针,能够对大型动物进行表面下消融
(最终在人类患者中)并通过非线性显微镜提供视觉反馈和指导,
3) 评估激光探针在犬声带疤痕体内模型中的功效和人体工程学
最终评估注射生物材料的定位对声带功能改善的影响。
该项目的成功完成将产生一种新的临床前测试手术工具,该工具将能够实现受控
用于治疗人类患者疤痕声带的可注射生物材料的可重复测试。
这个高度跨学科的项目将在消色差、微型光学、微光学等领域提供创新。
制造、用于超快激光传输和非线性内窥镜的大型空芯光纤技术、高
用于区分组织的高速视频频闪图像分析和定量分析方法
使用非线性显微镜观察形态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADELA BEN-YAKAR其他文献
ADELA BEN-YAKAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADELA BEN-YAKAR', 18)}}的其他基金
Three-dimensional fluorescence imaging flow cytometry at up to million frames per second
每秒高达百万帧的三维荧光成像流式细胞术
- 批准号:
10568627 - 财政年份:2023
- 资助金额:
$ 49.61万 - 项目类别:
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10398159 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10178013 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10030979 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10634520 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8181677 - 财政年份:2011
- 资助金额:
$ 49.61万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8336957 - 财政年份:2011
- 资助金额:
$ 49.61万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8722424 - 财政年份:2011
- 资助金额:
$ 49.61万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8856453 - 财政年份:2011
- 资助金额:
$ 49.61万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8528445 - 财政年份:2011
- 资助金额:
$ 49.61万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the coordinated endothelial-epithelial interactions in adult hair cycle of mouse skin
研究小鼠皮肤成年毛发周期中协调的内皮-上皮相互作用
- 批准号:
10674132 - 财政年份:2023
- 资助金额:
$ 49.61万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 49.61万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 49.61万 - 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 49.61万 - 项目类别: