Three-dimensional fluorescence imaging flow cytometry at up to million frames per second
每秒高达百万帧的三维荧光成像流式细胞术
基本信息
- 批准号:10568627
- 负责人:
- 金额:$ 41.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimalsBig DataBiologicalBiological AssayCaenorhabditis elegansCancer BiologyCardiacCardiotoxicityCellsCollaborationsColorCommunitiesCytometryDataData AnalysesData CompressionData DisplayData ReportingDetectionDevelopmentDiagnosisEarly DiagnosisEmulsionsFlow CytometryFrequenciesGoalsHela CellsHematologyImageImmersionImmunologyIndividualInfrastructureInheritedLabelLengthLightLobeLocationMeasurementMeasuresMetadataMethodsMicrobiologyMicrofluidic MicrochipsMicroscopeMicroscopyMorphologic artifactsMorphologyNamesNatureNoiseOpticsOrganoidsOutcomes ResearchPathologyPatientsPharmaceutical PreparationsPhenotypePopulationResolutionRotationSample SizeSamplingScanningScientistSideSignal TransductionSiliconSpatial DistributionSpecimenSpeedSpottingsSystemTechnologyTherapeuticThree-Dimensional ImagingTimeTissue EngineeringToxic effectTrainingTranslationsVisualizationabsorptioncancer cellcancer diagnosiscell dimensioncellular imagingcomputer infrastructureconvolutional neural networkdata acquisitiondata handlingdeep learning modeldetection methoddrug discoveryexperimental studyfluorescence imagingheart dimension/sizehigh resolution imaginghigh rewardhigh riskimaging platformimprovedmetermicroscopic imagingnext generationnovelphotomultiplierrare cancerscreeningstem cell biologysubmicrontooltwo photon microscopytwo-dimensionaltwo-photon
项目摘要
Flow cytometry is the tool of choice for high-speed analysis of large cell populations, with the tradeoff of lacking
intracellular spatial information. Imaging flow cytometry (IFC) has emerged as a new tool that combines
advantages of microscopy with the high speed of flow cytometry. However, they can only provide 2D images to
determine three-dimensional (3D) distribution of cellular features, have a limited field of view (FOV), and require
precise control of the fluidic system to minimize image blurring due to uncontrolled cell rotation or translation
across the FOV. The absence of 3D imaging results in ambiguity of object locations and blurring by focal depth
due to the projection of a 3D cell into a 2D image. Although in the last decades flow cytometry systems that can
actually acquire three-dimensional (3D) spatial information were developed, constraints related to resolution and
samples size remained as their biggest limitation. Therefore, the goal of this proposal is to develop the next
generation 3D imaging flow cytometers with high-throughput and high-content capabilities for 3D imaging of
hundreds to thousands of cells and spheroids per second with high resolution, for the first time. We propose to
develop such a cytometry method, using a novel microscopy method, Line Excitation Array Detection microscopy
(LEAD), that can image objects in large field of views at the rate of current 1D cytometers, but with high 3D
resolution and high signal-to-noise ratios (SNR). Our proposed LEAD cytometer is a fast-scanned light-sheet
microscope capable of MHz frame rates. We will develop the fastest MHz line-scanning method using a
longitudinal acousto-optic deflector driven by a chirped frequency signal. We will image the scanned light sheet
using a linear silicon photomultiplier array, which will provide the sensitivity required when scanning so quickly,
and the parallel readout required for such high frame rates. First, we will develop linear LEAD 3D imaging flow
cytometry at sub-micron scale resolution and small FOVs. Although our preliminary data indicates we will be
able to image at 100 kHz – MHz frame rates at such high resolution with high SNR, we will perform experiments
measuring the SNR to determine the operating range of LEAD cytometry. In the second aim, we will increase
the FOV by developing two-photon LEAD imaging flow cytometry with Bessel beams. To support the larger FOV,
we will develop a 128-channel data acquisition system using eight 16-channel data acquisition cards. In the third
aim, we will develop a state-of-the-art computational infrastructure that allows for file transfers up to 25 GB/s,
storage (>100 TB), and analysis that only takes 3x the imaging time. We will use 2 deep learning models for
analysis. If successful, this high-risk/high-reward proposal would alter the imaging flow cytometry landscape.
The proposed 3D imaging flow cytometer can offer improved cell and spheroid analysis in diverse biomedical
fields such as cancer biology, microbiology, immunology, hematology, and stem cell biology. Improved sensitivity
will help users to improve research outcomes or diagnose patients with higher statistical power.
流式细胞仪是对大型细胞种群进行高速分析的首选工具,而缺乏的权衡
细胞内空间信息。成像流式细胞术(IFC)已成为一种结合的新工具
显微镜的优势,流式细胞仪的高速。但是,他们只能提供2D图像
确定细胞特征的三维(3D)分布,视野有限(FOV),并且需要
精确控制流体系统,以最大程度地减少由于不受控制的细胞旋转或翻译而模糊的图像
穿过FOV。缺少3D成像会导致对象位置的歧义,并通过焦点深度模糊
由于将3D单元投影到2D图像中。尽管在过去的几十年中,流式细胞仪系统可以
实际获取了三维(3D)空间信息的开发,与解决方案有关的限制和
样本尺寸仍然是它们最大的限制。因此,该提议的目的是开发下一个
具有高通量和高含量功能的3D成像流式细胞仪,可用于3D成像
第一次,每秒数百至数千个细胞和球状素,首次以高分辨率。我们建议
使用新型显微镜方法,线激发阵列检测显微镜开发这种细胞仪法
(LEAD),可以以当前一维细胞仪的速率在大视野中对象进行图像,但具有高3D
分辨率和高信噪比(SNR)。我们提出的铅细胞仪是一个快速扫描的灯页面
能够MHz帧速率的显微镜。我们将使用A开发最快的MHz线扫描方法
纵向示威者纵向信号驱动。我们将图像扫描的轻纸
使用线性硅光电倍数阵列,该阵列将提供如此快速扫描时需要的灵敏度,
以及如此高帧速率所需的并行读数。首先,我们将开发线性铅3D成像流
亚微米尺度分辨率和小型FOV的细胞仪。尽管我们的初步数据表明我们将
能够以100 kHz - MHz帧速率在如此高的SNR下以如此高的分辨率进行图像,我们将执行实验
测量SNR以确定铅细胞仪的工作范围。在第二个目标中,我们将增加
通过用贝塞尔束开发两光子铅成像流式细胞术来进行FOV。为了支持较大的FOV,
我们将使用八张16通道数据采集卡开发128通道数据采集系统。在第三
目的,我们将开发一个最先进的计算基础架构,该基础架构允许文件传输多达25 GB/s,
存储(> 100 TB),分析仅需成像时间3倍。我们将使用2个深度学习模型
分析。如果成功的话,这个高风险/高回报的建议将改变成像流式细胞仪局势。
提出的3D成像流式细胞仪可以在潜水员生物医学中提供改进的细胞和球形分析
癌症生物学,微生物学,免疫学,血液学和干细胞生物学等领域。提高灵敏度
将帮助用户改善研究成果或诊断具有较高统计能力的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADELA BEN-YAKAR其他文献
ADELA BEN-YAKAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADELA BEN-YAKAR', 18)}}的其他基金
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10398159 - 财政年份:2020
- 资助金额:
$ 41.55万 - 项目类别:
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10178013 - 财政年份:2020
- 资助金额:
$ 41.55万 - 项目类别:
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10030979 - 财政年份:2020
- 资助金额:
$ 41.55万 - 项目类别:
Probe-based two photon microscopy for functional, label-free early cancer diagnosis
基于探针的双光子显微镜用于功能性、无标记早期癌症诊断
- 批准号:
10634520 - 财政年份:2020
- 资助金额:
$ 41.55万 - 项目类别:
Ultrafast Laser Phonosurgery for Biomaterial Localization in Scarred Vocal Folds
超快激光声外科手术用于疤痕声带生物材料定位
- 批准号:
9751242 - 财政年份:2016
- 资助金额:
$ 41.55万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8181677 - 财政年份:2011
- 资助金额:
$ 41.55万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8336957 - 财政年份:2011
- 资助金额:
$ 41.55万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8722424 - 财政年份:2011
- 资助金额:
$ 41.55万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8856453 - 财政年份:2011
- 资助金额:
$ 41.55万 - 项目类别:
High-speed opto-fluidics to screen entire nervous system in aging and disease
高速光流控技术可筛查整个神经系统的衰老和疾病
- 批准号:
8528445 - 财政年份:2011
- 资助金额:
$ 41.55万 - 项目类别:
相似国自然基金
基于家系大数据的基因编辑动物生产性能与生物安全性综合评价
- 批准号:
- 批准年份:2021
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
利用知识图谱进行生命组学数据知识发现的关键技术研究
- 批准号:31871341
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
反转座基因注释工具的开发及在家蚕基因组中的应用
- 批准号:31871330
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于组学大数据解析RNA编辑带来的基因进化动力学改变和功能适应性
- 批准号:31771412
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基因反式剪接起源和进化的大数据研究及其在基因演化中的功能
- 批准号:31571310
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Development of remotely actuated deformable membranes for in situ mechanical testing of soft tissue
开发用于软组织原位机械测试的远程致动变形膜
- 批准号:
10452283 - 财政年份:2022
- 资助金额:
$ 41.55万 - 项目类别:
Development of remotely actuated deformable membranes for in situ mechanical testing of soft tissue
开发用于软组织原位机械测试的远程致动变形膜
- 批准号:
10708754 - 财政年份:2022
- 资助金额:
$ 41.55万 - 项目类别:
A web-based framework for multi-modal visualization and annotation of neuroanatomical data
基于网络的神经解剖数据多模式可视化和注释框架
- 批准号:
10365435 - 财政年份:2021
- 资助金额:
$ 41.55万 - 项目类别:
Mechanisms of microcystin-induced hepatocellular carcinoma in nonalcoholic steatohepatitis
非酒精性脂肪性肝炎微囊藻毒素诱发肝细胞癌的机制
- 批准号:
10515346 - 财政年份:2021
- 资助金额:
$ 41.55万 - 项目类别: