Structure-Guided Studied of GPCRs of RAS
RAS GPCR 的结构引导研究
基本信息
- 批准号:9751369
- 负责人:
- 金额:$ 54.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAffectAgonistAllosteric SiteAngiotensin IIAngiotensin ReceptorAntihypertensive AgentsAtherosclerosisAutoantibodiesBindingBiologyBiophysicsBlood VesselsCardiacCardiovascular DiseasesCardiovascular PhysiologyCell AdhesionCell physiologyCellsCellular biologyChemosensitizationChronicClinicClinical DataCouplingCrystallographyCyclic GMPCytoskeletonDevelopmentDimensionsDiseaseDrug TargetingEndothelial CellsEssential HypertensionExhibitsFunctional disorderG-Protein-Coupled ReceptorsGene ExpressionGenerationsGoalsGrowthHeartHeart failureHeterodimerizationHormonesHumanInflammatoryIntegrin-mediated Cell Adhesion PathwayKidneyKidney DiseasesKidney FailureKnowledgeLaboratoriesLeadLigandsMediatingMethodologyModelingMolecularMolecular ConformationMovementMusMuscle ContractionMutagenesisOrganPathogenicityPathologyPharmacologyPhenotypePhosphorylationPhysiologicalPopulationProcessPubMedReceptor SignalingReceptor, Angiotensin, Type 1RegulationRenin-Angiotensin-Aldosterone SystemResearchRodentRoleSignal TransductionSiteSite-Directed MutagenesisSmooth Muscle MyocytesStructureStudy modelsTechnical ExpertiseTechniquesTestingTransgenic MiceVascular Smooth Muscleanalogbasecardiovascular disorder riskcell growth regulationclinical practicecombatdesensitizationdesigndrug developmentdrug discoveryfilaminhypertension controlhypertension treatmentin vivoinhibitor/antagonistmigrationmolecular modelingmouse modelnovelnovel therapeuticspreclinical studypreventpublic health relevancereceptorreceptor bindingsmall molecule inhibitorthree dimensional structurethree-dimensional modelingtooltrafficking
项目摘要
Abstract
The AngII type 1 receptor (AT1R) is widely known to be the master regulator of normal cardiovascular
physiology. In a variety of diseases chronic stimulation of AT1R causes organ damage due to AngII-induced
abnormal growth, adhesion, migration and inflammatory gene expression in cells. AT1R blockers (ARBs)
effectively control hypertension but their efficacy in preventing organ damage varies widely due to unknown
mechanism. Efforts have been made in several laboratories to elucidate the molecular basis of pleotropic AT1R
signaling process. We have focused our research on structure, conformation and pharmacological
mechanisms governing AT1R. We have elucidated mechanisms governing AT1R pharmacology by using site-
directed mutagenesis, cell signaling, design of AngII-analogs, and transgenic mouse models. We were the first
to show ligand-independent and ligand-biased signaling in AT1R, AT2R and MAS.
We have recently elucidated the first 3D-structure of ARB-bound human AT1R, as an important step for
beginning structure-based studies of this antihypertensive drug-target. This knowledge is the primer to extend
the structure determination approach to AT2R and the modeling approach to AT2R and MAS leading to
structure based drug discovery (SBDD) for these receptors. AT1R structure has revealed the presence of a
filamin binding motif (FBM) suggesting that AT1R may directly activate cell adhesion signaling through Filamin
A (FLNa). Molecular dynamic studies of AT1R reveal allosteric pockets in the receptor that interface functional
aspects of AT1R. The AT1R pocket 1 separates the auto-antibody binding ECL2 from orthosteric ligand pocket.
Pocket 2 is distinct from trans-membrane functional sites and it may be responsible for AT1R
heterodimerization with other GPCRs. Allosteric ligands could intervene with pathologies caused by
autoantibodies and heterodimers targeting AT1R. Hence, extending structure-based studies (i) to AT2R and
MAS, (ii) to target AT1R-FLNa coupling and (iii) to discover allosteric ligands has the potential to generate new
tools targeting GPCRs of RAAS more effectively than at present. We propose following three aims:
Aim 1. Define ligand-receptor atomic contacts for AT2R by crystallography and for MAS by molecular modeling.
Validate ligand-receptor contacts by functional tests. We will elucidate 3D-structure of AT2R and target
residues in AT2R and MAS for structure-function analysis to provide basis for drug development.
Aim 2. Determine the mechanism by which AT1R-FLNa interaction regulates integrin-mediated cell
adhesion/movement signaling. We will validate FBM of AT1R by mutagenesis and structural analysis to
develop an inhibitor of this interaction. We will study the effects of inhibiting AT1R-FLNa coupling on AT1R
induced FLNa phosphorylation and adhesion-based phenotypic modulation of cells.
Aim 3. Discover chemotypes targeting allosteric sites of AT1R and characterize allosteric ligand pharmacology
and functions. We will disrupt coupling between allosteric and orthosteric sites by small molecule inhibitors.
Effect of disruption on AT1R signaling in cells and mice will be evaluated.
We will use state-of-the-art molecular, biophysical, cell biology and in vivo techniques in our preclinical studies
to advance our understanding of long unresolved issues in AT1R biology. Our findings are easily translatable to
the clinic and may facilitate the development of novel therapeutics.
抽象的
众所周知,AngII 1 型受体 (AT1R) 是正常心血管的主要调节因子
生理。在多种疾病中,AT1R 的慢性刺激会导致 AngII 诱导的器官损伤
细胞的异常生长、粘附、迁移和炎症基因表达。 AT1R 阻滞剂 (ARB)
有效控制高血压,但由于未知因素,其预防器官损伤的功效差异很大
机制。多个实验室已做出努力来阐明多效性 AT1R 的分子基础
信令过程。我们的研究重点是结构、构象和药理学
AT1R 的调控机制。我们通过使用位点阐明了 AT1R 药理学的控制机制
定向诱变、细胞信号传导、AngII 类似物的设计和转基因小鼠模型。我们是第一个
显示 AT1R、AT2R 和 MAS 中配体独立和配体偏向的信号传导。
我们最近阐明了第一个结合 ARB 的人类 AT1R 3D 结构,这是
开始对该抗高血压药物靶点进行基于结构的研究。这些知识是扩展的基础
AT2R 的结构确定方法以及 AT2R 和 MAS 的建模方法导致
这些受体的基于结构的药物发现(SBDD)。 AT1R结构揭示了一个
细丝蛋白结合基序 (FBM) 表明 AT1R 可能通过细丝蛋白直接激活细胞粘附信号
A (FLNa)。 AT1R 的分子动力学研究揭示了受体中与功能接口连接的变构袋
AT1R 的各个方面。 AT1R 口袋 1 将结合 ECL2 的自身抗体与正位配体口袋分开。
Pocket 2 与跨膜功能位点不同,它可能负责 AT1R
与其他 GPCR 异二聚化。变构配体可以干预由以下原因引起的病理:
针对 AT1R 的自身抗体和异二聚体。因此,将基于结构的研究 (i) 扩展到 AT2R 和
MAS,(ii) 靶向 AT1R-FLNa 偶联,以及 (iii) 发现变构配体有可能产生新的
针对 RAAS GPCR 的工具比目前更有效。我们提出以下三个目标:
目标 1. 通过晶体学定义 AT2R 的配体-受体原子接触,通过分子建模定义 MAS 的配体-受体原子接触。
通过功能测试验证配体-受体接触。我们将阐明 AT2R 的 3D 结构和目标
AT2R和MAS中的残基进行结构功能分析,为药物开发提供依据。
目标 2. 确定 AT1R-FLNa 相互作用调节整合素介导的细胞的机制
粘附/运动信号。我们将通过诱变和结构分析来验证 AT1R 的 FBM
开发这种相互作用的抑制剂。我们将研究抑制AT1R-FLNa偶联对AT1R的影响
诱导 FLNa 磷酸化和基于粘附的细胞表型调节。
目标 3. 发现针对 AT1R 变构位点的化学型并表征变构配体药理学
和功能。我们将通过小分子抑制剂破坏变构和正构位点之间的耦合。
将评估破坏对细胞和小鼠中 AT1R 信号传导的影响。
我们将在临床前研究中使用最先进的分子、生物物理、细胞生物学和体内技术
增进我们对 AT1R 生物学中长期未解决问题的理解。我们的发现很容易转化为
临床并可能促进新疗法的开发。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT1R Initiated by van der Waals Attraction.
GPCR 的激素肽激活机制:范德华吸引力引发 AT1R 的血管紧张素 II 激活状态。
- DOI:10.1021/acs.jcim.8b00583
- 发表时间:2019
- 期刊:
- 影响因子:5.6
- 作者:Singh,KhuraijamDhanachandra;Unal,Hamiyet;Desnoyer,Russell;Karnik,SadashivaS
- 通讯作者:Karnik,SadashivaS
Effect of novel GPCR ligands on blood pressure and vascular homeostasis.
新型 GPCR 配体对血压和血管稳态的影响。
- DOI:10.1016/bs.mcb.2018.10.001
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jara,ZairaPalomino;Singh,KhuraijamDhanachandra;Unal,Hamiyet;Desnoyer,Russell;Yokota,Rodrigo;Pesquero,JorgeLuis;Casarini,DulceElena;Karnik,SadashivaS
- 通讯作者:Karnik,SadashivaS
Structural perspectives on the mechanism of signal activation, ligand selectivity and allosteric modulation in angiotensin receptors: IUPHAR Review 34.
- DOI:10.1111/bph.15840
- 发表时间:2022-09
- 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sadashiva S Karnik其他文献
イルベサルタンのAT1受容体非依存性効果-ロサルタンとの比較
厄贝沙坦的 AT1 受体依赖性作用 - 与氯沙坦的比较
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
木谷嘉博;三浦伸一郎;藤野正礼;Sadashiva S Karnik;朔啓二郎 - 通讯作者:
朔啓二郎
Sadashiva S Karnik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sadashiva S Karnik', 18)}}的其他基金
Structure-Guided Analysis of Mechanisms of AT1R Functions
AT1R 功能机制的结构引导分析
- 批准号:
9336426 - 财政年份:2016
- 资助金额:
$ 54.43万 - 项目类别:
Regulation of AT1R-signaling and pathology in vessels through microRNA
通过 microRNA 调节血管中 AT1R 信号传导和病理学
- 批准号:
8398599 - 财政年份:2012
- 资助金额:
$ 54.43万 - 项目类别:
Regulation of AT1R-signaling and pathology in vessels through microRNA
通过 microRNA 调节血管中 AT1R 信号传导和病理学
- 批准号:
8485661 - 财政年份:2012
- 资助金额:
$ 54.43万 - 项目类别:
Regulation of AT1R-signaling and pathology in vessels through microRNA
通过 microRNA 调节血管中 AT1R 信号传导和病理学
- 批准号:
8657108 - 财政年份:2012
- 资助金额:
$ 54.43万 - 项目类别:
Phosphoproteome and Ang II-induced VSMC Gene Expression
磷酸化蛋白质组和 Ang II 诱导的 VSMC 基因表达
- 批准号:
7025391 - 财政年份:2006
- 资助金额:
$ 54.43万 - 项目类别:
Phosphoproteome and Ang II-induced VSMC Gene Expression
磷酸化蛋白质组和 Ang II 诱导的 VSMC 基因表达
- 批准号:
7171551 - 财政年份:2006
- 资助金额:
$ 54.43万 - 项目类别:
Phosphoproteome and Ang II-induced VSMC Gene Expression
磷酸化蛋白质组和 Ang II 诱导的 VSMC 基因表达
- 批准号:
7780029 - 财政年份:2006
- 资助金额:
$ 54.43万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 54.43万 - 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
- 批准号:
10754079 - 财政年份:2023
- 资助金额:
$ 54.43万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 54.43万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 54.43万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 54.43万 - 项目类别: