Forecasting influenza epidemics using a mechanistic epidemic model
使用机械流行病模型预测流感流行
基本信息
- 批准号:9750623
- 负责人:
- 金额:$ 26.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBlood CirculationCessation of lifeDataEpidemicEpidemiologyEvolutionGeneticGeographic stateGeographyHealthHospital AdministratorsHospitalsHumanImmunityIncidenceIndividualInfectionInfluenzaInfluenza preventionInfluenza vaccinationKnowledgeLeadLinkMeasuresMembrane ProteinsMethodsModelingPopulationPredispositionPrevalencePreventionPublic HealthResearchResource AllocationResourcesSeasonsSeveritiesTarget PopulationsTestingTimeUncertaintyVaccinationVaccinesVariantViralVirusacquired immunitybasedata resourcefluflu transmissiongenetic strainimprovedinfluenza epidemicinfluenza surveillanceinfluenza virus straininfluenza virus vaccineinfluenzavirusmathematical modelpopulation basedpreventprospectiveseasonal influenzasurveillance datavaccine effectivenessvirology
项目摘要
SUMMARY/ABSTRACT
This project will fill a fundamental knowledge gap in influenza epidemiology, which is the lack of a
quantified relationship between viral antigenic drift and human susceptibility to influenza. We will then apply
this new knowledge to improve the accuracy and timeliness of influenza forecasts. Antigenic drift refers to
gradual changes in the surface proteins of influenza viruses, which allow new virus strains to escape acquired
immunity and to re-infect individuals who were previously infected with influenza. Antigenic cartography can
quantify the magnitude of antigenic drift (i.e. the antigenic distance) between influenza virus strains. To date,
however, the relationship between antigenic distance and susceptibility to infection has not been quantified for
human influenza.
We will use a mechanistic model of influenza transmission and immunity to estimate the association
between increasing antigenic distance and increasing susceptibility to infection with influenza. For this, we will
take advantage of a unique data resource: active influenza surveillance conducted since the 2011/12 influenza
season through the US Influenza Vaccine Effectiveness Network. These data include population-based estimates
of the incidence of influenza, stratified by virus subtype/lineage and with antigenic and genetic characterization
of circulating influenza viruses, in three geographically distinct US states. The data also include influenza
vaccine coverage for the target populations. We will apply our mechanistic influenza model to these data and
quantify the drift/susceptibility association.
We will then apply these findings to improve forecasting of seasonal influenza epidemics. Two different
approaches are currently taken to influenza forecasting. Short-term forecasts use near-real-time surveillance data
to predict the timing and intensity of the peak in influenza cases, with lead times of a few weeks. Long-term
forecasts use data on the relative prevalence of different influenza strains to predict which strains will dominate
the upcoming season. At present neither short- nor long-term forecasting methods make effective use of data on
pre-existing immunity to influenza due to vaccination or prior circulation of influenza strains. Having quantified
the drift/susceptibility association, we will test the forecasting abilities of our influenza model. We hypothesize
that including data on prior circulation of influenza and on vaccine coverage will allow us to forecast the
intensity and subtype/lineage distribution of upcoming influenza epidemics with lead times of 9+ months.
The proposed research will benefit human health by 1) improving our understanding of the interplay
between human immunity and virus antigenic drift and 2) improving the accuracy and timeliness of influenza
forecasts, allowing more time for the allocation of resources for influenza prevention and treatment.
摘要/摘要
该项目将填补流感流行病学中的基本知识差距,这是缺乏
病毒抗原漂移与人类对流感的敏感性之间的量化关系。然后我们将申请
这种新知识是为了提高流感预测的准确性和及时性。抗原漂移是指
流感病毒的表面蛋白的逐渐变化,允许新的病毒菌株逃脱
免疫力和重新感染以前感染流感的人。抗原制图可以
量化流感病毒菌株之间抗原漂移(即抗原距离)的大小。迄今为止,
但是,抗原距离和感染易感性之间的关系尚未量化
人类流感。
我们将使用流感传播和免疫力的机械模型来估计关联
在增加抗原距离和增加流感感染的敏感性之间。为此,我们将
利用独特的数据资源:自2011/12流感以来进行的主动流感监测
通过美国流感疫苗有效性网络调味。这些数据包括基于人群的估计
流感率的发生率,由病毒亚型/谱系和抗原和遗传表征分层
在三个地理上不同的美国国家中流传的流感病毒。数据还包括流感
目标种群的疫苗覆盖范围。我们将把机械性流感模型应用于这些数据,并
量化漂移/敏感性关联。
然后,我们将应用这些发现来改善对季节性流感流行病的预测。两个不同
目前采用方法来进行流感预测。短期预测使用近实时监视数据
为了预测流感病例中峰值的时间和强度,交货时间为几周。长期
预测使用有关不同流感菌株相对患病率的数据来预测哪些菌株将占主导地位
即将到来的季节。目前,短期或长期预测方法都没有有效地使用数据
由于疫苗接种或先前的流感菌株循环,对流感的免疫力预先存在。量化
漂移/敏感性关联,我们将测试流感模型的预测能力。我们假设
其中包括有关流感和疫苗覆盖范围的先前流通数据的数据,将使我们能够预测
即将到来的流感流行病的强度和亚型/谱系分布,含量为9个月以上。
拟议的研究将通过1)提高我们对相互作用的理解来使人类健康受益
在人类免疫力和病毒抗原漂移之间以及2)提高流感的准确性和及时性
预测,为预防流感和治疗的资源分配更多时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael L Jackson其他文献
Michael L Jackson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael L Jackson', 18)}}的其他基金
Prospective annual estimates of influenza vaccine effectiveness and burden of disease
流感疫苗有效性和疾病负担的前瞻性年度估计
- 批准号:
10179278 - 财政年份:2017
- 资助金额:
$ 26.86万 - 项目类别:
Forecasting influenza epidemics using a mechanistic epidemic model
使用机械流行病模型预测流感流行
- 批准号:
9361027 - 财政年份:2017
- 资助金额:
$ 26.86万 - 项目类别:
Prospective annual estimates of influenza vaccine effectiveness and burden of disease
流感疫苗有效性和疾病负担的前瞻性年度估计
- 批准号:
9323271 - 财政年份:2016
- 资助金额:
$ 26.86万 - 项目类别:
Prospective annual estimates of influenza vaccine effectiveness and burden of disease
流感疫苗有效性和疾病负担的前瞻性年度估计
- 批准号:
9204586 - 财政年份:2016
- 资助金额:
$ 26.86万 - 项目类别:
Core_Prospective population-based estimation of influenza vaccine effectiveness a
核心_基于人群的流感疫苗有效性前瞻性评估
- 批准号:
8874753 - 财政年份:2011
- 资助金额:
$ 26.86万 - 项目类别:
Core_Prospective population-based estimation of influenza vaccine effectiveness a
核心_基于人群的流感疫苗有效性前瞻性评估
- 批准号:
8507009 - 财政年份:2011
- 资助金额:
$ 26.86万 - 项目类别:
Core_Prospective population-based estimation of influenza vaccine effectiveness a
核心_基于人群的流感疫苗有效性前瞻性评估
- 批准号:
8693630 - 财政年份:2011
- 资助金额:
$ 26.86万 - 项目类别:
相似国自然基金
典型环境纳米材料与血液循环中蛋白质的相互作用及心血管毒性效应调控的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
考虑血液循环及主动呼吸生理特性的乘员生物力学模型及载荷响应研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
典型环境纳米材料与血液循环中蛋白质的相互作用及心血管毒性效应调控的分子机制
- 批准号:22176206
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
基于血管振动激光散斑检测技术的皮瓣血液循环障碍智能预警方法研究
- 批准号:82102177
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于血管振动激光散斑检测技术的皮瓣血液循环障碍智能预警方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Senescent hepatocytes mediate reprogramming of immune cells in acute liver failure
衰老肝细胞介导急性肝衰竭中免疫细胞的重编程
- 批准号:
10679938 - 财政年份:2023
- 资助金额:
$ 26.86万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 26.86万 - 项目类别:
Pulmonary endothelium targeted adenoviral gene therapy for the correction of mucopolysaccharidosis type I
肺内皮靶向腺病毒基因治疗纠正 I 型粘多糖贮积症
- 批准号:
10678053 - 财政年份:2023
- 资助金额:
$ 26.86万 - 项目类别:
High-dimensional mass imaging of muscle for the mechanistic study of T cells in inclusion body myositis
肌肉高维质量成像用于 T 细胞在包涵体肌炎机制研究中的应用
- 批准号:
10669370 - 财政年份:2023
- 资助金额:
$ 26.86万 - 项目类别: