Strengthening Causal Inference in Behavioral Obesity Research
加强行为肥胖研究中的因果推断
基本信息
- 批准号:9651880
- 负责人:
- 金额:$ 14.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-20 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): The identification of causal relations is fundamental to a science of intervention and prevention. Obesity is a major problem for which much progress in understanding, treatment, and prevention remains to be made. Behavior is a vital component contributing to variations in energy balance and body composition, the final common pathways of obesity. Social factors are key influences on behaviors, and perhaps even physiological factors, which affect energy balance. Understanding which social and behavioral factors cause variations in adiposity and which other factors (e.g., environmental) cause variations in behavioral and social factors is vital to producing, evaluating, and selecting among intervention and prevention strategies as well as to understanding obesity's root causes. Evidence for causation (or lack thereof) of hypothesized influential factors exists on a continuum from weakest to strongest. Yet, most dialogue and research in obesity does not consider the evidence continuum between ordinary association studies (observational non-intervention studies among unrelated individuals), which do not offer strong assessments of causal effects, and randomized controlled trials (RCTs), which do offer strong inferences, but cannot be done in all circumstances. In contrast to this polarized view, there are techniques that lie intermediar between ordinary association tests and RCTs, including but not limited to quasi-experimental studies and natural experiments. Such designs are increasingly used, especially in the disciplines of economics and genetics, but are rarely used in obesity research. Our ability to draw causal inferences in obesity research could be strengthened by increased judicious use of such approaches. In-depth understanding and appropriate use of the full continuum of these methods requires input from disciplines including statistics, economics, psychology, epidemiology, mathematics, philosophy, and in some cases behavioral or statistical genetics. The application of these techniques, however, does not involve routine well-known 'cookbook' approaches but requires understanding of underlying principles, so the investigator can tailor approaches to specific and varying situations. Yet, no ongoing resource exists to provide such training and role models of scientists who regularly can and do traverse these disciplines are in short supply. The proposed annual 5-day short course on methods for causal inference in obesity research features some of the world's finest scientists who will help to fill this unmet need. This course for established and up- and-coming obesity researchers will be held annually at the University of Alabama at Birmingham. The nine course modules are formatted to provide rigorous exposure to the key fundamental principles underlying a broad array of techniques and experience in applying those principles and techniques through guided discussion of real examples in obesity research. The NIH and the scientific community at large call for better assessment of causal effect in obesity research and more training on such methods. We request the opportunity to be part of the solution.
描述(由申请人提供):因果关系的识别是干预和预防科学的基础。肥胖是一个主要问题,在理解,治疗和预防方面取得了很大进展。行为是导致能量平衡和身体成分变化的重要组成部分,即肥胖的最终途径。社会因素是对行为甚至生理因素的关键影响,影响能量平衡。了解哪些社会和行为因素会导致肥胖的差异以及哪些其他因素(例如环境)导致行为和社会因素的差异对于在干预和预防策略中产生,评估和选择以及了解肥胖的根本原因至关重要。从最弱到最强的连续体中存在因果关系的证据(或缺乏)的证据。然而,大多数肥胖中的对话和研究都不考虑普通关联研究(无关的个体之间的观察性非干预研究)之间的证据,这些证据不提供对因果效应的强烈评估,以及随机对照试验(RCT)(RCT),这些试验(RCT)提供了强有力的推论,但在所有情况下都不能进行。与这种两极分化的观点相反,在普通关联测试和RCT之间存在中间的技术,包括但不限于准实验研究和自然实验。这种设计越来越多地使用,尤其是在经济学和遗传学的学科中,但很少在肥胖研究中使用。通过增加对这种方法的明智使用,我们可以在肥胖研究中提出因果推断的能力。深入理解和适当使用这些方法的全面连续性需要学科的意见,包括统计,经济学,心理学,流行病学,数学,哲学,以及在某些情况下行为或统计遗传学。但是,这些技术的应用并不涉及常规的众所周知的“食谱”方法,而需要了解基本原则,因此研究者可以针对特定和不同的情况定制方法。然而,尚无持续的资源来提供经常可以并且确实穿越这些学科的科学家的培训和榜样。拟议的每年5天的短期课程涉及肥胖研究的因果推断方法,其中一些世界上最好的科学家将有助于满足这种未满足的需求。这项针对既定肥胖的肥胖研究人员的课程将每年在伯明翰的阿拉巴马大学举行。九个课程模块的格式化是为了通过对肥胖研究中的真实实例进行指导讨论,在应用这些原理和技术方面进行了广泛的技术和经验的严格接触。 NIH和科学界的大规模呼吁在肥胖研究中更好地评估因果关系,并在此类方法上进行更多培训。我们要求有机会成为解决方案的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID B ALLISON其他文献
DAVID B ALLISON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID B ALLISON', 18)}}的其他基金
Strengthening Causal Inference in Behavioral Obesity Research
加强行为肥胖研究中的因果推断
- 批准号:
9764709 - 财政年份:2018
- 资助金额:
$ 14.14万 - 项目类别:
Beyond textbook, yet simple, statistical tools for reproducible animal research
超越教科书的简单统计工具,用于可重复的动物研究
- 批准号:
9142329 - 财政年份:2015
- 资助金额:
$ 14.14万 - 项目类别:
Strengthening Causal Inference in Behavioral Obesity Research
加强行为肥胖研究中的因果推断
- 批准号:
10442511 - 财政年份:2014
- 资助金额:
$ 14.14万 - 项目类别:
Strengthening Causal Inference in Behavioral Obesity Research
加强行为肥胖研究中的因果推断
- 批准号:
10653986 - 财政年份:2014
- 资助金额:
$ 14.14万 - 项目类别:
相似国自然基金
基于因果推理的人机物融合系统需求建模与验证研究
- 批准号:62362006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果推理的高速列车牵引变流器可靠状态预警方法研究
- 批准号:52302426
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果推理和自监督学习的极化SAR图像跨域分类
- 批准号:62301539
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
建筑空调机房系统故障因果逻辑推理及响应决策机制研究
- 批准号:52308110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Diet and cardiovascular health across childhood and adolescence: strengthening evidence on the impact of diet using modern causal inference methods in Project Viva cohort
整个童年和青春期的饮食和心血管健康:在 Project Viva 队列中使用现代因果推理方法加强饮食影响的证据
- 批准号:
472128 - 财政年份:2022
- 资助金额:
$ 14.14万 - 项目类别:
Fellowship Programs
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
- 批准号:
10449576 - 财政年份:2022
- 资助金额:
$ 14.14万 - 项目类别:
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
- 批准号:
10673040 - 财政年份:2022
- 资助金额:
$ 14.14万 - 项目类别:
Strengthening Causal Inference in Behavioral Obesity Research
加强行为肥胖研究中的因果推断
- 批准号:
9764709 - 财政年份:2018
- 资助金额:
$ 14.14万 - 项目类别:
Strengthening causal inference in antisocial behaviour research
加强反社会行为研究中的因果推理
- 批准号:
2083187 - 财政年份:2018
- 资助金额:
$ 14.14万 - 项目类别:
Studentship