Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
基本信息
- 批准号:9325457
- 负责人:
- 金额:$ 16.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-12 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcysteineAftercareAntiestrogen TherapyAntioxidantsApoptosisBiological MarkersBreast Cancer CellCancer CenterCarcinomaCatabolismCell Culture TechniquesCell LineCell modelCellsClinicalClinical ResearchClinical TrialsClinical Trials DesignCoculture TechniquesCore FacilityCoupledCouplingDevelopment PlansDrug ModelingsDrug TargetingDrug resistanceEducational workshopEnrollmentEnsureEpigallocatechin GallateEpithelialEpithelial CellsEstrogen AntagonistsEstrogen receptor positiveFibroblastsFoundationsFulvestrantGene ExpressionGene Expression ProfilingGenerationsGenesGlycolysisGoalsHumanImmunohistochemistryIn VitroKnowledgeLaboratoriesLaboratory ResearchLeadLeadershipLearningLinkMCF7 cellMalignant Epithelial CellMalignant NeoplasmsMeasurementMeasuresMentorsMentorshipMetabolicMetabolismMitochondriaModelingMolecular Biology TechniquesNCI-Designated Cancer CenterNuclearOxidative PhosphorylationOxidative StressPathway interactionsPatientsPharmaceutical PreparationsPhysiciansProgression-Free SurvivalsProteinsPublic HealthReactive Oxygen SpeciesRecurrenceRecurrent diseaseRefractoryRefractory DiseaseRelapseResearchResearch PersonnelResistanceRespirationRisk FactorsRoleScientistSelective Estrogen Receptor ModulatorsSignal PathwaySignal TransductionStaining methodStainsStromal CellsSubgroupT47DTamoxifenTestingTissuesUp-RegulationWorkXenograft Modelbasecancer cellcareercareer developmentcaveolin 1cell growthcohortdesigndrug developmentdrug testingfollow-upgenetically modified cellsglucose uptakeimprovedmalignant breast neoplasmmeetingsmitochondrial metabolismmortalityoverexpressionpredictive markerpredictive signatureprogramsprotein expressionpublic health relevanceskillstreatment strategytumortumor metabolismtumor microenvironmentuncoupling protein 1uptake
项目摘要
DESCRIPTION (provided by applicant): My long term career goal is to become an independent physician scientist who focuses on drug resistance in breast cancer and combines laboratory based mechanistic research and clinical trial design and implementation. My current efforts are devoted to studying how to overcome antiestrogen resistance by modulating epithelial stromal metabolic interactions in breast cancer utilizing molecular biology techniques. My mentor Dr. Richard Pestell has expertise in breast cancer metabolism and the tumor microenvironment. My co-mentor Dr. Scott Waldman has expertise in clinical trial design and implementation. The Kimmel Cancer Center where I work is an NCI designated Cancer Center with a well-established and vibrant research program and multiple core facilities that will allow me to carry out this proposal. A career development plan based on experimental work in Dr. Pestell's lab, twice weekly interactions with Dr. Pestell, and weekly with Dr. Waldman as well as mentorship committee meetings every two months and participation in workshops and seminars is being implemented to learn technical and leadership skills. Relapsed or refractory cancer after antiestrogen therapy defines antiestrogen resistance clinically and this is a major public health issue. Antiestrogen resistance occurs in 40% of ER+ patients and it is most often fatal. We lack good biomarkers and treatments for antiestrogen resistance. It has recently been discovered that metabolic coupling with high mitochondrial metabolism in epithelial cells with low metabolism in the stroma is associated with antiestrogen resistance. We have recently demonstrated that a tumor stroma with increased reactive oxygen species (ROS), low oxidative phosphorylation metabolism (OXPHOS) and high glycolysis is found in aggressive breast cancers. This type of stromal metabolism leads to metabolic coupling and transfer of high energy catabolites to the epithelial cancer cells and is associated with antiestrogen resistance. My overall hypothesis is that metabolic coupling drives antiestrogen resistance and reversal of epithelial-stromal metabolic coupling will overcome antiestrogen resistance in breast cancer. The project aims are: i) To test the hypothesis that OXPHOS metabolic coupling is sufficient to induce antiestrogen resistance in breast cancer. I will use an in vitro stromal-epithelial cell model of estrogen receptor positive (ER+) breast cancer. I will genetically modify cells in order to generate tight epithelial-stromal metabolic coupling with epithelial cancer cells with high OXPHOS metabolism via upregulation of monocarboxylate transporter 1 (MCT1), nuclear respiration factor 1 (NRF1) and mitoNEET and stromal cells with low OXPHOS metabolism and high catabolism via upregulation of monocarboxylate transporter 4 (MCT4) and uncoupling protein 1 (UCP1) to determine if changes in the metabolism of the epithelial or stromal compartment are sufficient to increase antiestrogen resistance. These cell lines that I generate will be cultured with either fibroblasts or ER+ carcinoma cells. Antiestrogen resistance will be measured by quantifying apoptosis and proliferation of the breast cancer cells after treatment with tamoxifen and fulvestrant. We will also determine if these cell lines induce antiestrogen resistance using xenograft models. ii) To test the hypothesis that expression of genes linked to OXPHOS metabolic coupling are associated with antiestrogen resistance in a cohort of patients. I will stain a human tumor microarray (TMA) of patients with ER+ breast cancer treated with tamoxifen for the proteins listed in aim 1. I will correlate the expression of these proteins by immunohistochemistry (IHC) in the stromal and epithelial compartments with progression free survival (PFS). We will also perform gene expression profiling (GEP) of the carcinoma cells that I generate to determine if we can generate a signature that predicts antiestrogen resistance. iii)
To test the hypothesis that drugs that modulate OXPHOS, glycolysis or reactive oxygen species will overcome antiestrogen resistance. I will use our epithelial-stromal coculture models of antiestrogen resistant breast cancer, including the genetically modified cells generated for aim 1 to determine if drugs that metabolically uncouple epithelial and stromal cells can overcome antiestrogen resistance. Specifically, I will test drugs that increase or decrease OXPHOS, inhibit glycolysis or inhibit oxidative stress to determine their effects on carcinoma cell growth. I will also study the functional effects of these drugs in vitro by studying glucose uptake, mitochondrial activity and ROS measurement to ensure expected effects. I will also study the effects of the antioxidant n-acetylcysteine (NAC) on OXPHOS metabolic coupling in humans. Subjects with breast cancer are being enrolled in a pilot clinical trial with NAC where cancer tissue is obtained pre-NAC and post-NAC treatment. The effects of NAC on stromal Caveolin-1 (Cav-1) and MCT4 expression will be studied by IHC. This study and career development plan will allow me to gain the skills to become an independent investigator and the research will discover mechanisms of antiestrogen drug resistance, develop biomarkers and lay the foundations for drug development. I hope to become a physician scientist who links the laboratory and clinical research aspects to improve the lives of patients with breast cancer.
描述(由申请人提供):我的长期职业目标是成为一名独立的医师科学家,他专注于乳腺癌的耐药性,并结合了基于实验室的机械研究以及临床试验设计和实施。我目前的努力致力于研究如何利用分子生物学技术调节乳腺癌中上皮基质代谢相互作用来克服抗雌激素的耐药性。我的导师理查德·佩斯特尔(Richard Pestell)博士在乳腺癌代谢和肿瘤微环境方面具有专业知识。我的同事斯科特·沃尔德曼(Scott Waldman)博士在临床试验设计和实施方面具有专业知识。我工作的Kimmel癌症中心是NCI指定的癌症中心,该中心具有成就良好且充满活力的研究计划和多个核心设施,这将使我能够执行这一建议。根据Pestell博士实验室的实验工作,与Pestell博士进行两次互动,以及每两个月与指导委员会会议每周进行一次互动,并参加研讨会和研讨会,以学习技术和领导技能。 抗雌激素治疗后复发或难治性癌在临床上定义抗雌激素耐药性,这是一个主要的公共卫生问题。抗雌激素耐药性发生在40%的ER+患者中,最常见的是致命的。我们缺乏良好的生物标志物和抗雌激素耐药性的治疗方法。最近发现,在基质中代谢低的上皮细胞中与线粒体代谢高的代谢耦合与抗雌激素耐药性有关。我们最近证明,在侵袭性乳腺癌中发现了活性氧(ROS),低氧化磷酸化代谢(OXPHOS)和高糖酵解的肿瘤基质。这种类型的基质代谢会导致高能分解代谢物向上皮癌细胞的代谢偶联和转移,并与抗雌激素耐药性有关。我的总体假设是,代谢耦合驱动抗雌激素耐药性和上皮阵营代谢耦合的逆转将克服乳腺癌中抗雌激素的耐药性。该项目的目的是:i)检验以下假设:Oxphos代谢偶联足以诱导乳腺癌中的抗雌激素抗性。我将使用雌激素受体阳性(ER+)乳腺癌的体外基质上皮细胞模型。我将通过遗传修饰细胞,以生成与上皮层状癌细胞与上皮癌细胞的紧密上皮形式偶联,该癌细胞通过上调单羧酸盐转运蛋白1(MCT1),核呼吸因子1(NRF1)(NRF1),以及较低的氧化型氧化剂和高氧化型氧化剂,通过核呼吸因子1(MCT1),核呼吸因子1(NRF1)和高氧化型细胞,氧(MCT4)和解耦蛋白1(UCP1)确定上皮或基质室代谢的变化是否足以增加抗雌激素的耐药性。我产生的这些细胞系将用成纤维细胞或ER+癌细胞培养。抗雌激素的耐药性将通过量化他莫昔芬和富伏者治疗后量化乳腺癌细胞的凋亡和增殖。我们还将确定这些细胞系是否使用异种移植模型诱导抗雌激素耐药性。 ii)检验以下假设:与Oxphos代谢耦合相关的基因的表达与一群患者的抗雌激素抗性有关。我将对AIM 1中列出的他莫昔芬治疗的ER+乳腺癌患者的人类肿瘤微阵列(TMA)染色。我将通过免疫组织化学(IHC)在基质和上皮隔层中通过免疫组织化学(IHC)与进展的自由生存(PFS)相关联。我们还将执行我生成的癌细胞的基因表达分析(GEP),以确定是否可以产生预测抗雌激素耐药性的特征。 iii)
为了测试调节Oxphos的药物,糖酵解或活性氧的药物将克服抗雌激素的耐药性。我将使用抗抗雌激素的乳腺癌的上皮细胞共培养模型,包括针对AIM 1产生的转基因细胞来确定代谢上上皮细胞和基质细胞的药物是否可以克服抗雌激素的耐药性。具体而言,我将测试增加或减少Oxphos,抑制糖酵解或抑制氧化应激以确定其对癌细胞生长的影响的药物。我还将通过研究葡萄糖摄取,线粒体活性和ROS测量以确保预期效应来研究这些药物在体外的功能效应。我还将研究抗氧化剂N-乙酰半胱氨酸(NAC)对人类Oxphos代谢耦合的影响。患有乳腺癌的受试者正在接受NAC的试验临床试验,其中NAC获得了NAC组织和NAC后治疗后的癌症组织。 IHC将研究NAC对基质小窝蛋白-1(CAV-1)和MCT4表达的影响。 这项研究和职业发展计划将使我能够获得成为独立研究者的技能,研究将发现抗雌激素药物耐药性,发展生物标志物并为药物开发奠定基础。我希望成为一名医师科学家,他将实验室和临床研究方面联系起来,以改善乳腺癌患者的生活。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease.
- DOI:10.18632/oncotarget.3174
- 发表时间:2015-03-10
- 期刊:
- 影响因子:0
- 作者:Lamb R;Ozsvari B;Lisanti CL;Tanowitz HB;Howell A;Martinez-Outschoorn UE;Sotgia F;Lisanti MP
- 通讯作者:Lisanti MP
MCT1 in Invasive Ductal Carcinoma: Monocarboxylate Metabolism and Aggressive Breast Cancer.
- DOI:10.3389/fcell.2017.00027
- 发表时间:2017
- 期刊:
- 影响因子:5.5
- 作者:Johnson JM;Cotzia P;Fratamico R;Mikkilineni L;Chen J;Colombo D;Mollaee M;Whitaker-Menezes D;Domingo-Vidal M;Lin Z;Zhan T;Tuluc M;Palazzo J;Birbe RC;Martinez-Outschoorn UE
- 通讯作者:Martinez-Outschoorn UE
Cancer stem cell metabolism.
- DOI:10.1186/s13058-016-0712-6
- 发表时间:2016-05-24
- 期刊:
- 影响因子:0
- 作者:Peiris-Pagès M;Martinez-Outschoorn UE;Pestell RG;Sotgia F;Lisanti MP
- 通讯作者:Lisanti MP
Targeting tumor-initiating cells: eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction.
- DOI:10.18632/oncotarget.3278
- 发表时间:2015-03-10
- 期刊:
- 影响因子:0
- 作者:Lamb R;Harrison H;Smith DL;Townsend PA;Jackson T;Ozsvari B;Martinez-Outschoorn UE;Pestell RG;Howell A;Lisanti MP;Sotgia F
- 通讯作者:Sotgia F
Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells.
- DOI:10.18632/oncotarget.9122
- 发表时间:2016-06-07
- 期刊:
- 影响因子:0
- 作者:Fiorillo M;Lamb R;Tanowitz HB;Mutti L;Krstic-Demonacos M;Cappello AR;Martinez-Outschoorn UE;Sotgia F;Lisanti MP
- 通讯作者:Lisanti MP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ubaldo Martinez Outschoorn其他文献
Ubaldo Martinez Outschoorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ubaldo Martinez Outschoorn', 18)}}的其他基金
Lactate as a Driver of Inflammation and Virulence in SARS-Coronavirus Infections
乳酸作为 SARS 冠状病毒感染中炎症和毒力的驱动因素
- 批准号:
10252304 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Tumor Microenvironment Metabolism in Invasive Ductal Carcinoma of the Breast
乳腺癌浸润性导管癌的肿瘤微环境代谢
- 批准号:
10300432 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Tumor Microenvironment Metabolism in Invasive Ductal Carcinoma of the Breast
乳腺癌浸润性导管癌的肿瘤微环境代谢
- 批准号:
10530580 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Tumor Microenvironment Metabolism in Invasive Ductal Carcinoma of the Breast
乳腺癌浸润性导管癌的肿瘤微环境代谢
- 批准号:
9887834 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
- 批准号:
8635096 - 财政年份:2013
- 资助金额:
$ 16.46万 - 项目类别:
Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
- 批准号:
9128565 - 财政年份:2013
- 资助金额:
$ 16.46万 - 项目类别:
Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
- 批准号:
8733633 - 财政年份:2013
- 资助金额:
$ 16.46万 - 项目类别:
相似国自然基金
面向掌纹识别的安全与隐私保护理论和方法研究
- 批准号:62376211
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微观市场均衡视角下中国长期护理保险试点的福利分析与政策评估
- 批准号:72304093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
- 批准号:62306195
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于生命质量的癌症患者心理行为与护理干预
- 批准号:72381240026
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
天然水体中药品和个人护理品间接光降解产物预测模型的构建和应用
- 批准号:42307496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Overcoming Breast Cancer Therapeutic Resistance by Multifunctional RNA Nanoparticles
通过多功能RNA纳米颗粒克服乳腺癌治疗耐药性
- 批准号:
10600748 - 财政年份:2022
- 资助金额:
$ 16.46万 - 项目类别:
Matrix density promotes pro-tumorigenic hormone actions in breast cancer
基质密度促进乳腺癌中促肿瘤激素的作用
- 批准号:
10210363 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别:
Inhibition of P13 Kinase as a Strategy to Abrogate Antiestrogen Resistance in Br
抑制 P13 激酶作为消除 Br 抗雌激素耐药性的策略
- 批准号:
8764757 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别:
Matrix density promotes pro-tumorigenic hormone actions in breast cancer
基质密度促进乳腺癌中促肿瘤激素的作用
- 批准号:
10659147 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别:
Matrix density promotes pro-tumorigenic hormone actions in breast cancer
基质密度促进乳腺癌中促肿瘤激素的作用
- 批准号:
10052990 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别: