Nanoparticle Modified Human Fat Derived Mesenchymal Stem Cells for Brain Cancer (Change of Organization Application)
纳米颗粒修饰的人类脂肪源性间充质干细胞治疗脑癌(组织申请变更)
基本信息
- 批准号:9551197
- 负责人:
- 金额:$ 36.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-19 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAdultAffectAgeAmericanAnimalsAntineoplastic AgentsArtificial nanoparticlesBenchmarkingBlood - brain barrier anatomyBone MarrowBrainBrain NeoplasmsBypassCell Culture TechniquesCell SurvivalCellsCharacteristicsClinical TrialsDestinationsDevicesDiseaseDrug CarriersEffectivenessEngineeringFamilyFatty acid glycerol estersFormulationFreeze DryingFutureGene DeliveryGenesGenetic EngineeringGlioblastomaGliomaGoalsGrantHome environmentHumanHuman EngineeringIn VitroIncidenceInsertional MutagenesisInvadedInvestigationLeadMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of lungMedicalMesenchymal Stem CellsMethodsMicrofluidicsModelingModificationMorbidity - disease rateMusMuscleOncogenicOperative Surgical ProceduresOrganizational ChangePatientsPhenotypePrimary Brain NeoplasmsPropertyProtein EngineeringProteinsProtocols documentationRadiationRadiation therapyResearchRodentSafetyStem cellsSurfaceSurvival RateTechniquesTechnologyTestingTherapeuticTimeTissuesTransfectionTranslatingTropismTumor BurdenTumor InitiatorsVirusXenograft Modelbiodegradable polymerbone morphogenic proteinbrain parenchymacancer cellcell motilitycell typechemoradiationchemotherapyclinical applicationclinically relevanteffective therapyimmunogenicityin vivoineffective therapiesinterestmalignant breast neoplasmminimally invasivemortalitymouse modelnanobiotechnologynanoparticleneoplastic cellnew technologynon-viral gene deliverynovel therapeuticspersonalized medicinepublic health relevancestatisticstemozolomidetherapeutic proteintherapy resistanttumorviral gene delivery
项目摘要
DESCRIPTION (provided by applicant): Glioblastoma (GBM) is the most common primary brain tumor in adults, and accounts for 20% of all primary brain tumors. GBM has a median survival rate of only 14.6 months despite current best treatment practices including surgery and chemoradiation. A significant reason for this morbidity and mortality is the ability of GBM to invade normal brain parenchyma, making localized treatment ineffective. There is increasing evidence of a small subset of cells, brain tumor initiating cells (BTICs) that are responsible for the disease's treatment resistance. In order for treatment to be effective, these invading cells need to be targeted. One promising approach involves the use of mesenchymal stem cells (MSCs), which have been found to migrate preferentially to and home in on cancer cells. Moreover, MSCs can be engineered to synthesize and release anti-tumor proteins, like bone morphogenic protein 4 (BMP4), which affects BTICs. MSCs can be obtained from bone marrow (BM- MSC) and adipose tissue (AMSCs). BM-MSCs are difficult to obtain, have limited ex vivo proliferation capacity, and decrease in effectiveness with donor age. Unlike BM-MSCs, AMSCs are more abundant in supply, easier to obtain from fat tissue, express higher levels of surface markers implicated in cell migration, and have been shown to resist oncogenic transformation. AMSCs may therefore be a better option. The viral gene delivery method, though commonly used to modify AMSCs, is associated with insertional mutagenesis and immunogenicity, and, therefore, has potentially limited translational ability for use in human patients. Biodegradable, polymeric nanoparticles enable effective non-viral gene delivery to multiple cell types, including human AMSCs (hAMSCs), while avoiding the problems typical of viruses. In this grant, we propose a novel technology to combine Freshly-extracted Adipose Tissue (F.A.T.) and nanoparticles to non-virally engineer the primary hAMSCs contained within F.A.T without prior culture to secrete anti-cancer proteins while maintaining the cells' ability to migrate toward tumo cells. Our overall hypothesis is that nanoparticle-modified hAMSCs obtained from F.A.T. retain their tumor suppressive characteristics in a clinically relevant in vivo human GBM model. To test this hypothesis, we will pursue the following specific aims: (1) To effectively deliver exogenous genes of interest to Freshly-extracted Adipose Tissue (F.A.T.) from patients via lyophilized biodegradable nanoparticles. (2) To determine if nanoparticle-modified BMP4-secreting hAMSCs retain an anti-glioma effect in vitro. (3) To determine the safety and efficacy of nanoparticle-modified BMP4-secreting hAMSC treatment in combination with targeted radiation therapy on human GBM in an in vivo murine model. Aim 1 involves investigation and optimization of a unique technology of combining nanoparticles with F.A.T. from our patients. For aims 2 and 3, using nanoparticles already tested in commercial hAMSCs, we will now investigate the modification of primary hAMSCs that have been isolated and cultured prior to adding the nanoparticles. The techniques to be used in vitro and in vivo in this proposal have been developed and further characterized by our teams. In vitro studies will be conducted using new advancements in the fields of microfluidics and nanobiotechnology. In vivo studies will employ a mammalian xenograft model that engrafts human GSC-derived GBM, which bests recapitulates human GBM. Further, in the in vivo studies, animal subjects will be treated with radiation using Small Animal Radiation Research Platform (SARRP), thus recreating traditional conformal beam radiotherapy for humans on the scale of a mouse. The results of this study will determine whether nanoparticle-modified hAMSCs can provide a treatment that is safe and effective for not only patients with GBM, but many types of primary and metastatic brain cancers. For future clinical application, the nanoparticles could be administered either to hAMSCs obtained from patient fat after culturing for a few days or then given IV as a treatment or to F.A.T. with the resulting engineered hAMSCs re- administered during surgery. This may lead to clinical trials, with a revolutionary new way of treating patients with brain cancer and facilitating personalized medicine.
描述(由申请人提供):胶质母细胞瘤 (GBM) 是成人中最常见的原发性脑肿瘤,占所有原发性脑肿瘤的 20%,尽管目前包括手术和治疗在内的最佳治疗方法,GBM 的中位生存率仅为 14.6 个月。导致这种发病率和死亡率的一个重要原因是 GBM 能够侵入正常脑实质,从而导致局部治疗无效。越来越多的证据表明,一小部分细胞(脑肿瘤)是无效的。导致疾病治疗耐药的起始细胞(BTIC) 为了使治疗有效,需要针对这些入侵细胞,使用间充质干细胞(MSC),这种细胞已被发现具有迁移能力。此外,MSC 可以被改造为合成和释放抗肿瘤蛋白,例如影响 BTIC 的骨形态发生蛋白 4 (BMP4)。骨髓间充质干细胞 (BM-MSC) 和脂肪组织间充质干细胞 (AMSC) 很难获得,离体增殖能力有限,并且随着供体年龄的增长,有效性会下降。更容易从脂肪组织中获得,表达与细胞迁移有关的更高水平的表面标记,并且已被证明可以抵抗致癌转化,因此病毒基因传递方法可能是更好的选择,尽管通常用于修饰。 AMSCs 与插入突变和免疫原性相关,因此,在人类患者中使用时具有潜在的有限翻译能力,可生物降解的聚合物纳米粒子能够有效地将非病毒基因传递到多种细胞类型,包括人类 AMSCs (hAMSCs),同时避免了这种情况。在这项资助中,我们提出了一种新技术,将新鲜提取的脂肪组织 (F.A.T.) 和纳米粒子结合起来进行非病毒工程。我们的总体假设是,从 F.A.T 中获得的纳米颗粒修饰的 hAMSC 在临床相关的体内保留了其肿瘤抑制特性。为了检验这一假设,我们将追求以下具体目标:(1)有效地将感兴趣的外源基因传递到新鲜提取的脂肪组织中。 (F.A.T.) 通过冻干的可生物降解纳米颗粒 (2) 确定纳米颗粒修饰的 BMP4 分泌 hAMSC 是否在体外保留抗神经胶质瘤作用 (3) 确定纳米颗粒修饰的 BMP4 分泌 hAMSC 治疗的安全性和有效性。与体内小鼠模型中的人类 GBM 靶向放射治疗相结合,目标 1 涉及对纳米颗粒组合的独特技术进行研究和优化。对于目标 2 和 3,使用已经在商业 hAMSC 中测试的纳米颗粒,我们现在将研究在添加纳米颗粒之前分离和培养的原代 hAMSC 的修饰。我们的团队将利用微流体和纳米生物技术领域的新进展来开发和进一步表征体内研究。移植人类 GSC 衍生的 GBM 的异种移植模型,最好地再现了人类 GBM 此外,在体内研究中,将使用小动物放射研究平台(SARRP)对动物受试者进行放射治疗,从而在人类身上重现传统的适形束放射治疗。这项研究的结果将决定纳米颗粒修饰的 hAMSC 是否不仅可以为 GBM 患者提供安全有效的治疗,而且可以为多种类型的原发性和对于未来的临床应用,可以将纳米颗粒注射到从患者脂肪中培养几天后进行静脉注射的 hAMSC 中,或者在手术期间将所得的工程化 hAMSC 再次注射到 F.A.T 中。导致临床试验,以革命性的新方法治疗脑癌患者并促进个性化医疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Green其他文献
Jordan Green的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan Green', 18)}}的其他基金
Kinetic Assembly of Polymer-mRNA Nanoparticles Targets Circulating Monocytes to Enhance Cancer Immunotherapy
聚合物-mRNA纳米颗粒的动力学组装靶向循环单核细胞以增强癌症免疫治疗
- 批准号:
10681055 - 财政年份:2023
- 资助金额:
$ 36.46万 - 项目类别:
A Non-Viral Genetic Vaccine for Prevention and Treatment of Multiple Sclerosis
用于预防和治疗多发性硬化症的非病毒基因疫苗
- 批准号:
10374165 - 财政年份:2021
- 资助金额:
$ 36.46万 - 项目类别:
A Non-Viral Genetic Vaccine for Prevention and Treatment of Multiple Sclerosis
用于预防和治疗多发性硬化症的非病毒基因疫苗
- 批准号:
10228440 - 财政年份:2021
- 资助金额:
$ 36.46万 - 项目类别:
Gene Delivery Nanoparticles to Treat Glioblastoma
基因递送纳米颗粒治疗胶质母细胞瘤
- 批准号:
10058249 - 财政年份:2018
- 资助金额:
$ 36.46万 - 项目类别:
Gene Delivery Nanoparticles to Treat Glioblastoma
基因递送纳米颗粒治疗胶质母细胞瘤
- 批准号:
10532146 - 财政年份:2018
- 资助金额:
$ 36.46万 - 项目类别:
Gene Delivery Nanoparticles to Treat Glioblastoma
基因递送纳米颗粒治疗胶质母细胞瘤
- 批准号:
10304144 - 财政年份:2018
- 资助金额:
$ 36.46万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Interferon-Gamma / Interleukin-12 Axis in Metabolic Liver Disease
干扰素-γ/白介素-12 轴在代谢性肝病中的作用
- 批准号:
10735419 - 财政年份:2023
- 资助金额:
$ 36.46万 - 项目类别:
Role of SIK3 in PKA/mTORC1 regulation of adipose browning
SIK3 在 PKA/mTORC1 调节脂肪褐变中的作用
- 批准号:
10736962 - 财政年份:2023
- 资助金额:
$ 36.46万 - 项目类别:
Regulation of beige adipocyte plasticity in inguinal white adipose tissue.
腹股沟白色脂肪组织中米色脂肪细胞可塑性的调节。
- 批准号:
10563617 - 财政年份:2023
- 资助金额:
$ 36.46万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 36.46万 - 项目类别:
Epigenetic regulation of autophagy and stemness of MSCs in skeletal aging
骨骼衰老过程中间充质干细胞自噬和干性的表观遗传调控
- 批准号:
10901048 - 财政年份:2023
- 资助金额:
$ 36.46万 - 项目类别: