Cancer Deep Phenotype Extraction from Electronic Medical Records
从电子病历中提取癌症深层表型
基本信息
- 批准号:9298609
- 负责人:
- 金额:$ 18.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-06 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAdvanced Malignant NeoplasmApacheAutomobile DrivingBehaviorBostonCancer BiologyCancer PatientCharacteristicsClinicalClinical DataCollaborationsCommunitiesComputer softwareComputerized Medical RecordDataDevelopmentDiagnosisDiseaseEnsureEpigenetic ProcessEtiologyEvaluationFundingGene AmplificationGene ProteinsGeneral QualifierGeneticGenomicsGoalsHeterogeneityImageryImmune System DiseasesIndividualInformaticsInvestigationLaboratory FindingLawsLinkLiteratureLymph Node InvolvementMalignant NeoplasmsMalignant neoplasm of ovaryMedical RecordsMethodologyMethodsModelingMolecularMorphologyNatural Language ProcessingNeoplasm MetastasisNon-Insulin-Dependent Diabetes MellitusPatientsPediatric HospitalsPharmacogenomicsPhasePhenotypePrincipal InvestigatorProcessPublic HealthRecording of previous eventsResearchResearch PersonnelResearch Project GrantsRheumatoid ArthritisSclerosisSelection for TreatmentsSoftware DesignSourceStructureSystemTestingTextTranslational ResearchTreatment outcomeTumor VolumeUncertaintyUnited States National Institutes of HealthUniversitiesVariantVisualWorkanticancer researchcancer classificationcancer genomecancer genomicscancer initiationchemotherapeutic agentcostdesigngenomic dataindividual patientinformation organizationinsightinterestlaboratory developmentmalignant breast neoplasmmelanomanew technologynoveloncologyopen sourceoutcome predictionprecision medicineprogramsprototypepublic health relevanceresearch and developmentsoftware developmenttraittranslational cancer researchtranslational scientisttreatment responsetumorusability
项目摘要
DESCRIPTION (provided by applicant): Precise phenotype information is needed to advance translational cancer research, particularly to unravel the effects of genetic, epigenetic, and othe factors on tumor behavior and responsiveness. Examples of phenotypic variables in cancer include: tumor morphology (e.g. histopathologic diagnosis), co-morbid conditions (e.g. associated immune disease), laboratory findings (e.g. gene amplification status), specific tumor behaviors (e.g. metastasis) and response to treatment (e.g. effect of a chemotherapeutic agent on tumor). Current models for correlating EMR data with -omics data largely ignore the clinical text, which remains one of the most important sources of phenotype information for cancer patients. Unlocking the value of clinical text has the potential to enable new insights about cancer initiation, progression, metastasis, and response to treatment. We propose further collaboration of two mature informatics groups with long histories of developing open-source natural language processing (NLP) software (Apache cTAKES, caTIES and ODIE) to extend existing software with new methods for cancer deep phenotyping. Several aims propose investigation of biomedical information extraction where there has been little or no previous work (e.g. clinical genomic entities, and causal discourse). Visualization of extracted data, usability of the software, and dissemination are also emphasized. Three driving oncology projects led by accomplished translational investigators in Breast Cancer, Melanoma, and Ovarian Cancer will drive development of the software. These labs will contribute phenotype variables for extraction, test utility and usability of the software, and provide the setting for a extrinsic evaluation. The proposed research bridges novel methods to automate cancer deep phenotype extraction from clinical text with emerging standards in phenotype knowledge representation and NLP. This work is highly aligned with recent calls in the scientific literature o advance scalable and robust methods of extracting and representing phenotypes for precision medicine and translational research.
描述(由申请人提供):需要精确的表型信息来推进转化癌症研究,特别是揭示遗传、表观遗传和其他因素对肿瘤行为和反应性的影响。癌症表型变量的例子包括:肿瘤形态(例如组织病理学诊断)、共病状况(例如相关免疫疾病)、实验室检查结果(例如基因扩增状态)、特定肿瘤行为(例如转移)和对治疗的反应(例如效果)化学治疗剂对肿瘤的作用)。当前将 EMR 数据与组学数据相关联的模型在很大程度上忽略了临床文本,而临床文本仍然是癌症患者表型信息的最重要来源之一。释放临床文本的价值有可能使人们对癌症的发生、进展、转移和治疗反应产生新的见解。我们建议两个具有悠久开发开源自然语言处理(NLP)软件(Apache cTAKES、caTIES 和 ODIE)历史的成熟信息学小组进一步合作,以利用癌症深度表型分析的新方法扩展现有软件。有几个目标提出了对生物医学信息提取的研究,而以前的工作很少或根本没有(例如临床基因组实体和因果话语)。还强调了提取数据的可视化、软件的可用性和传播。由乳腺癌、黑色素瘤和卵巢癌领域卓有成效的转化研究人员领导的三个肿瘤学项目将推动该软件的开发。这些实验室将为软件的提取、测试实用性和可用性提供表型变量,并为外部评估提供设置。拟议的研究将自动从临床文本中提取癌症深层表型的新方法与表型知识表示和 NLP 的新兴标准联系起来。这项工作与科学文献中最近提出的呼吁高度一致,即为精准医学和转化研究提出先进的可扩展和稳健的提取和表示表型的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca S Jacobson其他文献
Rebecca S Jacobson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca S Jacobson', 18)}}的其他基金
Advanced Development of TIES-Enhancing Access to Tissue for Cancer Research
TIES 的先进发展——增强癌症研究组织的获取
- 批准号:
8741959 - 财政年份:2013
- 资助金额:
$ 18.78万 - 项目类别:
Advanced Development of TIES-Enhancing Access to Tissue for Cancer Research
TIES 的先进发展——增强癌症研究组织的获取
- 批准号:
8606937 - 财政年份:2013
- 资助金额:
$ 18.78万 - 项目类别:
Advanced Development of TIES-Enhancing Access to Tissue for Cancer Research
TIES 的先进发展——增强癌症研究组织的获取
- 批准号:
8901082 - 财政年份:2013
- 资助金额:
$ 18.78万 - 项目类别:
Computational Methods for Personalized and Adaptive Cognitive Training
个性化和适应性认知训练的计算方法
- 批准号:
7849693 - 财政年份:2009
- 资助金额:
$ 18.78万 - 项目类别:
Computational Methods for Personalized and Adaptive Cognitive Training
个性化和适应性认知训练的计算方法
- 批准号:
7523638 - 财政年份:2009
- 资助金额:
$ 18.78万 - 项目类别:
Continued Development and Evaluation of caTIES
caTIES 的持续开发和评估
- 批准号:
7749583 - 财政年份:2009
- 资助金额:
$ 18.78万 - 项目类别:
Pittsburgh Biomedical Informatics Training Program
匹兹堡生物医学信息学培训计划
- 批准号:
7870852 - 财政年份:2009
- 资助金额:
$ 18.78万 - 项目类别:
Continued Development and Evaluation of caTIES
caTIES 的持续开发和评估
- 批准号:
8403841 - 财政年份:2009
- 资助金额:
$ 18.78万 - 项目类别:
Continued Development and Evaluation of caTIES
caTIES 的持续开发和评估
- 批准号:
7558128 - 财政年份:2009
- 资助金额:
$ 18.78万 - 项目类别:
Continued Development and Evaluation of caTIES
caTIES 的持续开发和评估
- 批准号:
7999244 - 财政年份:2009
- 资助金额:
$ 18.78万 - 项目类别:
相似海外基金
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
- 批准号:
10481965 - 财政年份:2024
- 资助金额:
$ 18.78万 - 项目类别:
Examining the multilevel factors on quality of end-of-life care among cancer patients in Puerto Rico
检查影响波多黎各癌症患者临终关怀质量的多层次因素
- 批准号:
10557584 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Experiences of Discrimination, Dysbiosis, and Racial Disparities in Ovarian Cancer
卵巢癌中的歧视、生态失调和种族差异的经历
- 批准号:
10371537 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别: