Regulation of cardiac hypertrophy and failure by the histone methyltransferase Smyd1
组蛋白甲基转移酶 Smyd1 对心脏肥大和衰竭的调节
基本信息
- 批准号:9198054
- 负责人:
- 金额:$ 37.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdultAffectAnimal GeneticsAnimal ModelAutomobile DrivingAwardBindingBiological AssayCardiacCardiac MyocytesCardiac developmentCause of DeathCellsChIP-seqChromatinChromatin StructureComplexDataDiseaseEpigenetic ProcessFailureFundingGene ExpressionGenesGenetic ModelsGenetic TranscriptionGenomeGenomicsGrowthHeartHeart AbnormalitiesHeart DiseasesHeart HypertrophyHeart failureHistonesHomeostasisHumanHypertrophyKnockout MiceKnowledgeLuciferasesMass Spectrum AnalysisMethodologyModificationMolecularMolecular ProfilingMorphologyMusMuscle CellsMyocardiumNucleosomesParticipantPathologicPathologyPathway interactionsPhenotypePhenylephrinePhysiologicalPost-Translational Protein ProcessingProteinsProteomicsPublicationsRegulationReporterRoleSignal PathwaySignal TransductionStimulusTechnologyTestingTherapeuticTranscription Repressor/CorepressorTranscriptional ActivationUnited StatesVariantWorkWorkloadcell growthchromatin immunoprecipitationcombatexperimental studyfetalgene repressiongenetic regulatory proteinhistone methyltransferasein uteroin vivoinsightmouse modelnew therapeutic targetnext generation sequencingnoveloverexpressionpressurepreventpromoterpublic health relevanceresponsetherapeutic target
项目摘要
DESCRIPTION (provided by applicant): Cardiac hypertrophy, a common precursor to heart failure, is a compensatory response to an increased workload characterized by myocyte growth. Hypertrophic cardiomyocytes undergo significant changes in cellular plasticity by adopting the expression profile and some phenotypic aspects of fetal cardiac cells. This phenomenon represents the molecular underpinnings driving the morphological and physiological remodeling in heart disease and likely includes both maladaptive and compensatory mechanisms aimed at mitigating disease-induced remodeling. To execute these changes in gene expression, chromatin structure must undergo significant alterations to silence or activate select regions of the genome. Recent studies in murine models of cardiac hypertrophy have demonstrated that modulating key epigenetic factors can inhibit these gene expression changes and prevent pathologic remodeling; however, our knowledge of the chromatin modifiers driving cardiac disease is quite limited. Smyd1, a myocyte-specific histone methyltransferase, was originally identified as a necessary regulator of cardiac development in constitutive Smyd1 knockout mice, which die in utero due to cardiac defects. More recently, we have shown that Smyd1 expression is differentially regulated during pressure overload hypertrophy and failure in mice (consistent with its expression in humans) and that it controls pathologic gene expression and myocyte growth in the adult heart. Most intriguing, data from isolated myocytes show that over-expression of the Smyd1a variant can inhibit disease induced remodeling, suggesting this pathway may hold promise for therapeutic targeting. Despite these findings, very little is known regarding Smyd1's molecular function in the adult myocardium. This application will leverage a unique genetic animal model and state-of-the-art proteomic and next- generation sequencing technologies to conceptually advance our understanding of heart failure. Specifically, this work will determine if Smyd1a can inhibit growth and pathologic remodeling in an animal model of hypertrophy and failure and identify the factors governing Smyd1's activity, genomic targeting and functional variance. In addition this work will conclusively determine how Smyd1 regulates growth in the myocardium by identifying the genes bound by Smyd1 variants, and investigate how binding affects transcription. This approach will reveal discrete molecular mechanisms governing pathologic growth, but moreover, it has the potential to provide paradigm changing insights into how histone methyltransferases regulate chromatin structure and thereby cardiac phenotype. Ultimately, characterizing the components of this novel, myocyte-specific signaling pathway could reveal new therapeutic targets for heart failure.
描述(由申请人提供):心脏肥大是心力衰竭的常见前兆,是对以心肌细胞生长为特征的工作量增加的代偿性反应,肥大的心肌细胞通过采用胎儿心脏的表达谱和一些表型方面而经历细胞可塑性的显着变化。这种现象代表了驱动心脏病形态和生理重塑的分子基础,并且可能包括旨在减轻疾病引起的重塑的适应不良和补偿机制。然而,在基因表达中执行这些变化,染色质结构必须发生显着改变才能沉默或激活基因组的选定区域。然而,最近对小鼠心脏肥大模型的研究表明,调节关键的表观遗传因子可以抑制这些基因表达变化并防止病理重塑。 ,我们对导致心脏病的染色质修饰剂的了解相当有限,Smyd1 是一种心肌细胞特异性组蛋白甲基转移酶,最初被确定为组成型 Smyd1 心脏发育的必要调节因子。最近,我们的敲除实验表明,在小鼠压力超负荷肥大和衰竭期间,Smyd1 的表达受到差异性调节(与其在人类中的表达一致),并且它控制着成人心脏中的病理基因表达和肌细胞生长。分离的肌细胞表明 Smyd1a 变体的过度表达可以抑制疾病诱导的重塑,这表明该途径可能有望成为治疗靶向尽管有这些发现,但人们对它知之甚少。 Smyd1 在成人心肌中的分子功能该应用将利用独特的遗传动物模型和最先进的蛋白质组学和下一代测序技术从概念上增进我们对心力衰竭的理解。抑制肥大和衰竭动物模型中的生长和病理重塑,并确定控制 Smyd1 活性、基因组靶向和功能变异的因素。此外,这项工作将最终确定 Smyd1 如何调节生长。通过识别 Smyd1 结合的基因,研究结合如何影响转录,这种方法将揭示控制病理生长的离散分子机制,而且,它有可能为组蛋白甲基转移酶如何调节染色质结构和心脏提供范式改变的见解。最终,表征这种新型心肌细胞特异性信号通路的组成部分可以揭示心力衰竭的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Franklin其他文献
Sarah Franklin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Franklin', 18)}}的其他基金
The methyltransferase Smyd1 regulates cardiac physiology
甲基转移酶 Smyd1 调节心脏生理学
- 批准号:
10522980 - 财政年份:2022
- 资助金额:
$ 37.25万 - 项目类别:
The methyltransferase Smyd1 regulates cardiac physiology
甲基转移酶 Smyd1 调节心脏生理学
- 批准号:
10666617 - 财政年份:2022
- 资助金额:
$ 37.25万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8528045 - 财政年份:2011
- 资助金额:
$ 37.25万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8723268 - 财政年份:2011
- 资助金额:
$ 37.25万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8092249 - 财政年份:2011
- 资助金额:
$ 37.25万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8535191 - 财政年份:2011
- 资助金额:
$ 37.25万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8249849 - 财政年份:2011
- 资助金额:
$ 37.25万 - 项目类别:
Bmx Tyrosine Kinase Signaling in Cardiac Protection
Bmx 酪氨酸激酶信号传导在心脏保护中的作用
- 批准号:
7408825 - 财政年份:2008
- 资助金额:
$ 37.25万 - 项目类别:
Bmx Tyrosine Kinase Signaling in Cardiac Protection
Bmx 酪氨酸激酶信号传导在心脏保护中的作用
- 批准号:
7779514 - 财政年份:2008
- 资助金额:
$ 37.25万 - 项目类别:
Bmx Tyrosine Kinase Signaling in Cardiac Protection
Bmx 酪氨酸激酶信号传导在心脏保护中的作用
- 批准号:
7581041 - 财政年份:2008
- 资助金额:
$ 37.25万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Social and Dietary Determinants of Kidney Stone Risk
肾结石风险的社会和饮食决定因素
- 批准号:
10643740 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Paid Sick Leave Mandates and Mental Healthcare Service Use
带薪病假规定和心理保健服务的使用
- 批准号:
10635492 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
The role of oligodendrocyte precursor cells in circuit remodeling in the mature brain
少突胶质细胞前体细胞在成熟脑回路重塑中的作用
- 批准号:
10750508 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别: