The methyltransferase Smyd1 regulates cardiac physiology
甲基转移酶 Smyd1 调节心脏生理学
基本信息
- 批准号:10522980
- 负责人:
- 金额:$ 40.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultArteriesBindingBlood flowCardiacCardiac MyocytesCause of DeathCellsChIP-seqClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexCongestive Heart FailureCoronary ArteriosclerosisCrista ampullarisDataDiseaseDown-RegulationElectron MicroscopyElectron TransportEpigenetic ProcessEventExhibitsFluorometryGene ExpressionGenesGenetic TranscriptionHealthHeart failureHistone DeacetylaseHistone-Lysine N-MethyltransferaseHistonesHumanHypertrophic CardiomyopathyIschemiaKnockout MiceMediatingMetabolismMethylationMethyltransferaseMitochondriaMolecularMorphologyMusMuscle CellsMutationMyocardial IschemiaMyocardial dysfunctionMyocardiumOPA1 geneOrthologous GenePathogenicityPathologicPathway interactionsPatientsPhysiologyPrevention therapyProductionProtein IsoformsProtonsPublishingRegulationReperfusion TherapyResolutionRespirationRespiratory ChainRoleStructureTertiary Protein StructureTestingTherapeuticTherapeutic InterventionTissuesTranscriptTransgenic MiceVarianteffective therapygain of functiongenome-wideheart metabolismhuman diseasehuman tissuein vivoinduced pluripotent stem cellinsightischemic injuryloss of functionmouse modelmyocardial injurynoveloverexpressionpreventpromoterprotein expressiontherapeutic target
项目摘要
PROJECT SUMMARY
Coronary artery disease is the leading cause of death in the US and is the primary cause of chronic heart failure.
For patients with coronary artery disease, some advancements have been made clinically to restore blood flow
in diseased arteries and reduce myocardial injury from the resulting ischemia and subsequent reperfusion.
However, even with these advancements one quarter of patients will die or develop heart failure within 1 year.
Damage to the myocardium during ischemic injury includes deficiencies in metabolism and energetics. Some
key epigenetic regulators can prevent or reduce ischemic injury and pathological remodeling in murine models,
however, their ubiquitous expression has made them unsuitable for therapeutic targeting in humans, thus far. In
contrast, we recently identified the only known myocyte-specific epigenetic regulator of mitochondrial energetics
and metabolism – the histone lysine methyltransferase Smyd1 – which holds great therapeutic potential given
its tissue-specific expression. Specifically, we performed the first analysis of Smyd1 function in the adult
myocardium using inducible, cardiomyocyte-specific Smyd1 knockout mice and showed that loss of Smyd1 leads
to dysregulated cardiac metabolism and suppressed mitochondrial respiration, ultimately leading to heart failure
(published in AJP). Subsequently we showed that down-regulation of mitochondrial energetics is an early event
in these knockout mice (occurring before the onset of cardiac dysfunction) and results, at least in part, from
Smyd1’s regulation of PGC-1α transcription (published in PNAS). To further understand Smyd1’s role in
regulating cardiac physiology we recently generated transgenic mice allowing inducible, cardiomyocyte-specific
overexpression of the Smyd1a isoform (the mouse ortholog to human SMYD1) and subjected these mice to
permanent occlusion of the LAD. Our unpublished preliminary results show that Smyd1a gain-of-function can
enhance mitochondrial respiration and protect from ischemic injury, although how this is accomplished
molecularly is unknown. In addition, our preliminary data from these mice show increased mitochondrial cristae
formation and stabilization of respiratory chain supercomplexes within the cristae, concomitant with increased
Opa1 expression, a known driver of cristae morphology. These results implicate Opa1 as a novel, functionally
important downstream target of Smyd1a whereby cardiomyocytes upregulate energy efficiency, protecting them
from ischemic injury. Our overarching hypothesis is that Smyd1a protects from ischemic injury by regulating
mitochondrial energetics and enhancing respiration efficiency in the cardiomyocyte through regulation of both:
1) PGC-1α expression (a regulator of electron transport chain gene expression) and 2) OPA1-mediated cristae
remodeling and stabilization of electron transport chain supercomplexes. We will test this hypothesis in our
transgenic mice which conditionally overexpress Smyd1a. In addition, we will examine these pathways in cells
and human tissue with a putative SMYD1 loss-of-function variant, N101S, which we identified with collaborators
at the U. of Pittsburgh (Dr Lina Gonzalez) in a patient with hypertrophic cardiomyopathy and heart failure.
项目概要
冠状动脉疾病是美国的首要死因,也是慢性心力衰竭的主要原因。
对于冠状动脉疾病患者,临床上已取得一些进展以恢复血流
并减少因缺血和随后的再灌注引起的心肌损伤。
然而,即使有了这些进步,四分之一的患者仍将在一年内死亡或出现心力衰竭。
缺血性损伤期间的心肌损伤包括新陈代谢和能量学方面的缺陷。
关键的表观遗传调节因子可以预防或减少小鼠模型中的缺血性损伤和病理重塑,
然而,迄今为止,它们的普遍表达使得它们不适合用于人类的治疗靶向。
相比之下,我们最近发现了唯一已知的线粒体能量学的心肌细胞特异性表观遗传调节因子
和代谢——组蛋白赖氨酸甲基转移酶 Smyd1——具有巨大的治疗潜力
具体来说,我们对成人中的 Smyd1 功能进行了首次分析。
使用可诱导的、心肌细胞特异性 Smyd1 敲除小鼠对心肌进行研究,结果表明 Smyd1 的缺失会导致
导致心脏代谢失调并抑制线粒体呼吸,最终导致心力衰竭
(发表于 AJP)随后我们证明线粒体能量的下调是一个早期事件。
在这些基因敲除小鼠中(发生在心功能障碍发生之前),并且至少部分是由
Smyd1 对 PGC-1α 转录的调控(发表于 PNAS) 进一步了解 Smyd1 在 PGC-1α 转录中的作用。
调节心脏生理学我们最近培育了转基因小鼠,允许诱导,心肌细胞特异性
Smyd1a 亚型(人类 SMYD1 的小鼠直系同源物)的过度表达并使这些小鼠接受
我们未发表的初步结果表明,Smyd1a 可以实现 LAD 的永久闭塞。
增强线粒体呼吸并防止缺血性损伤,尽管这是如何实现的
此外,我们对这些小鼠的初步数据显示线粒体嵴增加。
嵴内呼吸链超复合物的形成和稳定,伴随着增加
Opa1 表达是嵴形态的已知驱动因素,这些结果表明 Opa1 是一种新型的、功能性的。
Smyd1a 的重要下游靶标,心肌细胞借此上调能量效率,保护它们
我们的首要假设是 Smyd1a 通过调节来防止缺血性损伤。
线粒体能量学并通过调节以下两者来提高心肌细胞的呼吸效率:
1) PGC-1α 表达(电子传递链基因表达的调节因子)和 2) OPA1 介导的嵴
我们将在我们的研究中测试这个假设。
条件性过度表达 Smyd1a 的转基因小鼠此外,我们将检查细胞中的这些途径。
以及我们与合作者共同鉴定出具有推定 SMYD1 功能丧失变体 N101S 的人体组织
匹兹堡大学(Lina Gonzalez 博士)治疗患有肥厚性心肌病和心力衰竭的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Franklin其他文献
Sarah Franklin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Franklin', 18)}}的其他基金
The methyltransferase Smyd1 regulates cardiac physiology
甲基转移酶 Smyd1 调节心脏生理学
- 批准号:
10666617 - 财政年份:2022
- 资助金额:
$ 40.04万 - 项目类别:
Regulation of cardiac hypertrophy and failure by the histone methyltransferase Smyd1
组蛋白甲基转移酶 Smyd1 对心脏肥大和衰竭的调节
- 批准号:
9198054 - 财政年份:2016
- 资助金额:
$ 40.04万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8528045 - 财政年份:2011
- 资助金额:
$ 40.04万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8723268 - 财政年份:2011
- 资助金额:
$ 40.04万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8092249 - 财政年份:2011
- 资助金额:
$ 40.04万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8535191 - 财政年份:2011
- 资助金额:
$ 40.04万 - 项目类别:
Reprogramming of cardiac genome by Smyd1 in hypertrophy and failure
Smyd1 在肥厚和衰竭中对心脏基因组进行重编程
- 批准号:
8249849 - 财政年份:2011
- 资助金额:
$ 40.04万 - 项目类别:
Bmx Tyrosine Kinase Signaling in Cardiac Protection
Bmx 酪氨酸激酶信号传导在心脏保护中的作用
- 批准号:
7408825 - 财政年份:2008
- 资助金额:
$ 40.04万 - 项目类别:
Bmx Tyrosine Kinase Signaling in Cardiac Protection
Bmx 酪氨酸激酶信号传导在心脏保护中的作用
- 批准号:
7779514 - 财政年份:2008
- 资助金额:
$ 40.04万 - 项目类别:
Bmx Tyrosine Kinase Signaling in Cardiac Protection
Bmx 酪氨酸激酶信号传导在心脏保护中的作用
- 批准号:
7581041 - 财政年份:2008
- 资助金额:
$ 40.04万 - 项目类别:
相似国自然基金
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
白血病抑制因子在诱导性多能干细胞分化的血管内皮前体细胞抑制动脉内膜增生中的作用
- 批准号:82370415
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
缝隙连接Cx43磷酸化修饰介导钙信号传递异常参与尼古丁致肺动脉重构的分子机制
- 批准号:82373622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HMGCS2调控巨噬细胞训练免疫对动脉粥样硬化斑块“维稳”的机制研究
- 批准号:82373884
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于NLRP3炎性小体驱动的巨噬细胞焦亡研究穗花杉双黄酮抗动脉粥样硬化作用
- 批准号:82360786
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 40.04万 - 项目类别:
Cholesterol modulation of BK currents and cerebral artery diameter via channel-forming slo1 subunits
胆固醇通过通道形成 slo1 亚基调节 BK 电流和脑动脉直径
- 批准号:
10751934 - 财政年份:2023
- 资助金额:
$ 40.04万 - 项目类别:
Flow regulation of the Alk1/Eng pathway in vascular homeostasis and disease
Alk1/Eng 通路在血管稳态和疾病中的流量调节
- 批准号:
10718429 - 财政年份:2023
- 资助金额:
$ 40.04万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 40.04万 - 项目类别: