Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI

控制质量并捕捉高级扩散加权 MRI 的不确定性

基本信息

  • 批准号:
    9146951
  • 负责人:
  • 金额:
    $ 64.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-21 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Diffusion weighted magnetic resonance imaging (DW-MRI) has opened unprecedented opportunities to simultaneously study local microarchitecture and global structural connectivity. Yet, nearly two decades after the initial presentation of diffusion tensor imaging (DTI), DW-MRI remains plagued by basic theoretical challenges to its interpretation in regions of complex tissues (e.g., crossing fibers). Understanding these complex regions with advanced DW-MRI methods is critical to quantitative assessment of the brain architectural organization, diagnosing connectivity abnormalities, and developing useful biomarkers. Although numerous potential acquisition and analysis techniques have been proposed, to date, there has not been a systematic characterization of the impacts of acquisition design and quality across advanced techniques. The motivating hypothesis of this work is that different advanced DW-MRI methods are appropriate for different imaging contexts given practical image acquisition considerations (e.g., feasible scan time, hardware, propensity for patient motion). Investigators considering studies involving advanced DW-MRI are faced with two critical questions: (1) "What is the expected performance (specificity/sensitivity) of possible advanced DW-MRI analyses given a particular imaging scenario?" and (2) "How can an imaging scenario be optimized to achieve target level of performance given a particular DW-MRI analysis scenario?" The overall goal of this project is resolve these important long-standing questions. We will evaluate the motivating hypothesis through a series of three experiments: " First, we will perform the most extensive phantom study to date to map the empirical sensitivity and specificity of advanced DW-MRI metrics. This study will generate scan-rescan data of known physical fiber structures. " Second, we will perform the most extensive scan-rescan study to date to map the in vivo reproducibility of advanced DW-MRI metrics. This study will generate scan-rescan data across all three major scan vendors with neurologically normal control volunteers who are age and gender stratified. " Third, we will collaborate with on-going clinical research studies to generate a large database of scan-rescan validation data. This study will enable mapping of normal inter-subject variance, lead to the construction of a normative database of advanced DW-MRI measures, and enable single-subject inference. Together, these efforts will (1) provide a quantitative basis for biophysical interpretation of biomarkers derived from advanced DW-MRI in the context of noise and sampling strategies and (2) provide a solid theoretical and empirical basis for optimization of protocols within scan-time and hardware constraints. The data, analysis software, and visualization tools will be made freely available to facilitate continued improvement and innovation. These efforts will drive quantitative exploration for biomarkers based on advanced DW-MRI and, eventually, improve patient care.
描述(由申请人提供):扩散加权磁共振成像(DW-MRI)为同时研究局部微体系结构和全局结构连通性提供了前所未有的机会。然而,在弥散张量成像 (DTI) 首次出现近二十年后,DW-MRI 在复杂组织区域(例如交叉纤维)的解释方面仍然受到基本理论挑战的困扰。使用先进的 DW-MRI 方法了解这些复杂区域对于定量评估大脑结构组织、诊断连接异常和开发有用的生物标志物至关重要。尽管已经提出了许多潜在的采集和分析技术,但迄今为止,还没有对先进技术的采集设计和质量的影响进行系统的描述。 这项工作的动机假设是,考虑到实际图像采集的考虑(例如,可行的扫描时间、硬件、患者运动的倾向),不同的先进 DW-MRI 方法适用于不同的成像环境。考虑涉及先进 DW-MRI 的研究的研究人员面临着两个关键问题:(1)“可能的预期性能(特异性/敏感性)是什么? 给定特定成像场景的高级 DW-MRI 分析?”和 (2)“如何优化成像场景,以在给定特定 DW-MRI 分析场景的情况下达到目标性能水平?” 该项目的总体目标是解决这些重要问题我们将通过一系列三个实验来评估这一激励假设:“首先,我们将进行迄今为止最广泛的模型研究,以绘制先进的 DW-MRI 指标的经验敏感性和特异性。这项研究将生成已知物理纤维结构的扫描-再扫描数据。 “其次,我们将进行迄今为止最广泛的扫描-重新扫描研究,以绘制先进的 DW-MRI 指标的体内可重复性。这项研究将在所有三个主要扫描供应商中生成扫描-重新扫描数据,并使用神经系统正常的年龄对照志愿者。第三,我们将与正在进行的临床研究合作,生成一个包含扫描-重新扫描验证数据的大型数据库。这项研究将能够绘制正常的受试者间方差图,构建先进的 DW-MRI 测量的规范数据库,并实现单受试者推理。 总之,这些努力将 (1) 在噪声和采样策略的背景下,为先进 DW-MRI 衍生的生物标志物的生物物理解释提供定量基础,(2) 为扫描时间内的方案优化提供坚实的理论和经验基础和硬件限制。数据、分析软件和可视化工具将免费提供,以促进持续改进和创新。这些努力将推动量化 基于先进的 DW-MRI 探索生物标志物,并最终改善患者护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bennett A. Landman其他文献

Nucleus subtype classification using inter-modality learning
使用跨模态学习进行细胞核亚型分类
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucas W. Remedios;Shunxing Bao;Samuel W. Remedios;Ho Hin Lee;L. Cai;Thomas Z. Li;Ruining Deng;Can Cui;Jia Li;Qi Liu;Ken S. Lau;Joseph T. Roland;M. K. Washington;Lori A. Coburn;Keith T. Wilson;Yuankai Huo;Bennett A. Landman
  • 通讯作者:
    Bennett A. Landman
RAISE - Radiology AI Safety, an End-to-end lifecycle approach
RAISE - 放射学人工智能安全,一种端到端生命周期方法
  • DOI:
    10.48550/arxiv.2311.14570
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Cardoso;Julia Moosbauer;Tessa S. Cook;B. S. Erdal;Brad W. Genereaux;Vikash Gupta;Bennett A. Landman;Tiarna Lee;P. Nachev;Elanchezhian Somasundaram;Ronald M. Summers;Khaled Younis;S. Ourselin;Franz MJ Pfister
  • 通讯作者:
    Franz MJ Pfister
DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images
DeepN4:学习 T1 加权图像的 N4ITK 偏置场校正
  • DOI:
    10.1007/s12021-024-09655-9
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Praitayini Kanakaraj;Tianyuan Yao;L. Cai;Ho Hin Lee;Nancy R. Newlin;Michael E. Kim;Chenyu Gao;Kimberly R. Pechman;D. Archer;Timothy Hohman;Angela L. Jefferson;L. Beason;Susan M. Resnick;E. Garyfallidis;Adam Anderson;K. Schilling;Bennett A. Landman;Daniel Moyer
  • 通讯作者:
    Daniel Moyer
Enhancing Single-Slice Segmentation with 3D-to-2D Unpaired Scan Distillation
通过 3D 到 2D 不成对扫描蒸馏增强单切片分割
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Yu;Qi Yang;Han Liu;Ho Hin Lee;Yucheng Tang;Lucas W. Remedios;Michael Kim;Shunxing Bao;Ann Xenobia Moore;Luigi Ferrucci;Bennett A. Landman
  • 通讯作者:
    Bennett A. Landman
Broadband nanosensing using heterodyne interferometry
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bennett A. Landman
  • 通讯作者:
    Bennett A. Landman

Bennett A. Landman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bennett A. Landman', 18)}}的其他基金

Novel Integrative Approach for the Early Detection of Lung Cancer using Repeated Measures
使用重复测量早期检测肺癌的新综合方法
  • 批准号:
    10322712
  • 财政年份:
    2021
  • 资助金额:
    $ 64.82万
  • 项目类别:
Novel Integrative Approach for the Early Detection of Lung Cancer using Repeated Measures
使用重复测量早期检测肺癌的新综合方法
  • 批准号:
    10596570
  • 财政年份:
    2021
  • 资助金额:
    $ 64.82万
  • 项目类别:
Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI
控制质量并捕捉高级扩散加权 MRI 的不确定性
  • 批准号:
    10490904
  • 财政年份:
    2015
  • 资助金额:
    $ 64.82万
  • 项目类别:
Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI
控制质量并捕捉高级扩散加权 MRI 的不确定性
  • 批准号:
    10316671
  • 财政年份:
    2015
  • 资助金额:
    $ 64.82万
  • 项目类别:
Controlling Quality and Capturing Uncertainty in Advanced Diffusion Weighted MRI
控制质量并捕捉高级扩散加权 MRI 的不确定性
  • 批准号:
    10683306
  • 财政年份:
    2015
  • 资助金额:
    $ 64.82万
  • 项目类别:
Quantitative Image Analysis Techniques for Optic Nerve Disease
视神经疾病的定量图像分析技术
  • 批准号:
    8620598
  • 财政年份:
    2013
  • 资助金额:
    $ 64.82万
  • 项目类别:
Resource Development for the Java Image Science Toolkit
Java 图像科学工具包的资源开发
  • 批准号:
    8013701
  • 财政年份:
    2010
  • 资助金额:
    $ 64.82万
  • 项目类别:

相似国自然基金

HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
  • 批准号:
    82301231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
  • 批准号:
    82301190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
  • 批准号:
    52375281
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
  • 批准号:
    82301213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
  • 批准号:
    82301214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 64.82万
  • 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 64.82万
  • 项目类别:
Arginase-1 signaling after neonatal stroke
新生儿中风后精氨酸酶 1 信号转导
  • 批准号:
    10664501
  • 财政年份:
    2023
  • 资助金额:
    $ 64.82万
  • 项目类别:
Ovarian impacts of extreme heat and co-exposure to climate change-induced harmful algal bloom toxins (Admin Supplement to R01ES032144)
极端高温和共同暴露于气候变化引起的有害藻华毒素对卵巢的影响(R01ES032144 的管理补充)
  • 批准号:
    10838834
  • 财政年份:
    2023
  • 资助金额:
    $ 64.82万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 64.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了