Peptidylarginine deiminase-4 and acute kidney injury
肽基精氨酸脱亚胺酶 4 与急性肾损伤
基本信息
- 批准号:9423315
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-13 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAffectApoptosisArginineArginine deiminaseAttenuatedBindingBlood VesselsCardiacCell DeathCell LineCell modelCellsCitrullineClinicalDataEnterobacteria phage P1 Cre recombinaseEventGeneticGoalsHealth Care CostsHumanIn VitroInfiltrationInflammationInflammatoryInflammatory ResponseInjuryIschemiaKidneyKidney TransplantationLeukocytesLiverMediatingMusNecrosisNeutrophil InfiltrationNuclearOperative Surgical ProceduresPatientsPeptidesPerioperativePharmacologyPlayProtein-arginine deiminaseProteinsProximal Kidney TubulesReceptor ActivationRecombinantsReperfusion InjuryReperfusion TherapyRoleSignal TransductionT-LymphocyteTestingTubular formationUp-RegulationanalogbasecGMP-dependent protein kinase Ibetacell injurycell typechemokineclinical carecytokinedesigneffective therapyextracellularin vivokidney cellmortalityneutrophilnovelnovel therapeuticsreceptorrenal ischemiatranslational approach
项目摘要
Acute kidney injury (AKI) due to ischemia and reperfusion (IR) is a major unresolved clinical problem with
extremely high mortality and health care costs and ischemic AKI frequently complicates major vascular,
cardiac and liver surgeries. Although renal tubular inflammation is a major mechanism of ischemic AKI, there
is no effective therapy to limit the inflammatory response after renal IR injury impeding effective perioperative
clinical care. Peptidyl arginine deiminase-4 (PAD4) catalyzes the post-translational conversion of arginine to
citrulline. Our recent novel findings show that that kidney proximal tubule cells not only express functional
PAD4 but also that renal IR injury increases the renal tubular PAD4 expression and activity in mice.
Furthermore, pharmacological PAD4 inhibition or genetic PAD4 deletion significantly reduced renal tubular
inflammation (cytokine/chemokine expression and neutrophil infiltration) and injury after IR. In contrast,
recombinant human PAD4 protein exacerbated renal tubular inflammation and injury after IR. However, the
mechanisms of PAD4 induction after renal IR, the cell type(s) in the kidney where the PAD4 induction occurs
as well as the downstream cellular signaling events generated by renal PAD4 activation remain unknown.
Exciting preliminary data suggest that extracellular ATP and its analogs induce renal proximal tubular cell
PAD4 by activating P2X7 receptors. This is highly significant as recent studies showed that extracellular ATP
released by necrotic cells after IR further promotes inflammation and cell death. Our preliminary data also
suggest that PAD4 citrullinates and increases the activity of renal proximal tubular
IkBα kinase γ (IKKγ also
known as NFkB Essential MOdulator or NEMO) to induce pro-inflammatory cytokines via nuclear NFkB
translocation. In addition, our preliminary studies suggest that blocking NEMO activation protects against
recombinant PAD4-induced exacerbation of ischemic AKI in mice.
Based on these preliminary data, our
central hypothesis is that extracellular ATP-mediated induction of renal proximal tubular PAD4 exacerbates
kidney inflammation and injury after IR via enhanced NEMO citrullination and activation. Furthermore, we
hypothesize that inhibiting renal tubular NEMO activation protects against kidney injury and inflammation after
IR. We will utilize both in vivo (murine renal IR) and in vitro (proximal tubule cells) models to further elucidate
the mechanisms and discover potential therapy for ischemic AKI by testing the following 3 specific aims.
Aim #1: To identify the renal cell type and determine the mechanisms of PAD4 induction after ischemic AKI.
Aim #2: To elucidate the mechanisms of PAD4-mediated renal inflammation after ischemic AKI.
Aim #3: To develop novel therapies for ischemic AKI by selectively targeting proximal tubule NEMO.
In summary, our translational approaches will provide a novel understanding of the mechanisms of renal
tubular inflammation and injury after renal IR. Our proposal also aims to identify novel therapies to protect
against ischemic AKI.
由于缺血和再灌注(IR)引起的急性肾脏损伤(AKI)是主要未解决的临床问题
极高的死亡率和医疗保健费用,缺血性AKI经常使主要血管复杂化,
心脏和肝脏手术。尽管肾小管炎症是缺血性AKI的主要机制,但
没有有效的疗法来限制肾脏IR损伤施加生效时期后的炎症反应
临床护理。肽基精氨酸脱氨酶-4(PAD4)催化精氨酸的翻译后转化
citrullline。我们最近的小说发现表明,肾脏近端细胞不仅表达功能
PAD4此外,肾脏IR损伤还增加了小鼠肾小管PAD4的表达和活性。
此外,药物PAD4抑制或遗传PAD4缺失显着降低了肾小管
IR后炎症(细胞因子/趋化因子表达和中性粒细胞浸润)和损伤。相比之下,
重组人PAD4蛋白加剧了IR后的肾小管注射和损伤。但是,
肾脏IR后PAD4诱导的机制,肾脏中的细胞类型发生PAD4诱导发生
以及肾脏PAD4激活产生的下游细胞信号传导事件尚不清楚。
令人兴奋的初步数据表明,细胞外ATP及其类似物会诱导肾脏近端结节细胞
PAD4通过激活P2X7受体。这是非常重要的,因为最近的研究表明细胞外ATP
IR后,由坏死细胞释放,进一步促进注射和细胞死亡。我们的初步数据
提示PAD4柠檬磷脂并增加肾近端管的活性
IKBα激酶γ(IKKγ也
被称为NFKB必需调节剂或NEMO),可通过核NFKB诱导促炎性细胞因子
易位。此外,我们的初步研究表明,阻止NEMO激活可以预防
重组PAD4诱导的小鼠缺血性AKI加重。
基于这些初步数据,我们
中心假设是细胞外ATP介导的肾近端管状PAD4加剧的诱导
IR后通过增强的Nemo柠檬硫化和激活后的肾脏炎症和损伤。此外,我们
假设抑制肾小管红色黑色疾病激活可预防肾脏损伤和注射
ir。我们将利用体内(鼠肾脏IR)和体外(近端小管细胞)模型进一步阐明
通过测试以下3个特定目的,该机制并发现缺血性AKI的潜在疗法。
目标#1:确定肾细胞类型并确定缺血性AKI后PAD4诱导的机理。
目标#2:阐明缺血性AKI后PAD4介导的肾脏注射的机制。
AIM#3:通过选择性靶向近端小管Nemo来开发缺血性AKI的新疗法。
总而言之,我们的翻译方法将提供对肾脏机制的新了解
肾脏IR后的管状感染和损伤。我们的建议还旨在确定保护的新疗法
反对缺血性AKI。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
H. Thomas Lee其他文献
H. Thomas Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('H. Thomas Lee', 18)}}的其他基金
Peptidylarginine deiminase-4 and acute kidney injury
肽基精氨酸脱亚胺酶 4 与急性肾损伤
- 批准号:
9764360 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Peptidylarginine deiminase-4 and acute kidney injury
肽基精氨酸脱亚胺酶 4 与急性肾损伤
- 批准号:
10226070 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Mechanisms of Renal Protection with Volatile Anesthetics
挥发性麻醉药的肾脏保护机制
- 批准号:
8301269 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Mechanism of renal protection with volatile anethetics
挥发性麻醉药的肾脏保护机制
- 批准号:
7636545 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Mechanism of renal protection with volatile anethetics
挥发性麻醉药的肾脏保护机制
- 批准号:
6875798 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Mechanism of renal protection with volatile anesthetics
挥发性麻醉药的肾保护机制
- 批准号:
6772181 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Mechanism of Renal Protection with Volatile Anesthetics
挥发性麻醉药的肾脏保护机制
- 批准号:
7581202 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Mechanism of renal protection with volatile anethetics
挥发性麻醉药的肾脏保护机制
- 批准号:
7049373 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Mechanisms of Renal Protection with Volatile Anesthetics
挥发性麻醉药的肾脏保护机制
- 批准号:
8475609 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
相似国自然基金
VNN1通过内质网非折叠蛋白应激介导单核巨噬细胞凋亡影响创伤患者脓毒症发生的机制研究
- 批准号:82372549
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
草鱼贮藏过程肌细胞凋亡对鱼肉品质的影响机制研究
- 批准号:32372397
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
MLCK1介导细胞凋亡和自噬影响炎症性肠病进展
- 批准号:82370568
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
EHMT1通过CBX4/MLKL轴调控心肌细胞坏死性凋亡影响心肌缺血再灌注损伤的机制研究
- 批准号:82370288
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
应激颗粒自噬对低氧诱导猪卵泡颗粒细胞凋亡的影响及机制研究
- 批准号:32302741
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Mitigate cisplatin induced acute kidney injury through preservation of vasculature and proximal tubule
通过保护脉管系统和近端小管减轻顺铂引起的急性肾损伤
- 批准号:
10644372 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Treating Kidney Injury by Modulating Heat Shock Proteins Using Soundwaves Combined with Mesenchymal Stem Cells and Their Extracellular Vesicles
声波结合间充质干细胞及其细胞外囊泡调节热休克蛋白治疗肾损伤
- 批准号:
10279863 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Extracellular Vesicles as a Link Between Placental and Renal Dysfunction in Preeclampsia
细胞外囊泡作为先兆子痫胎盘和肾功能障碍之间的联系
- 批准号:
10487535 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别: