Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
基本信息
- 批准号:9481524
- 负责人:
- 金额:$ 49.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAldehydesAngioplastyAnimal ModelArteriesAvidinBehaviorBindingBiomedical EngineeringBiotinBlood VesselsBolus InfusionBypassCardiovascular DiseasesCardiovascular Surgical ProceduresCellsChemicalsClinicalCollagenComplexCountryDevelopmentDialysis procedureDrug Delivery SystemsDrug KineticsDrug TargetingDrug usageEffectivenessEndarterectomyEvaluationFGF1 geneFibronectinsGelGoalsHeartHydrogelsHyperplasiaIn VitroIndividualInflammationInflammatoryInterventionKineticsLigand BindingLigandsMeasuresMediatingMedicalMethodsMicellesModelingMorbidity - disease rateNanotechnologyOperative Surgical ProceduresPaintPathogenesisPathogenicityPatientsPeptidesPeripheralPharmaceutical PreparationsPhenotypePluronicsPropertyPublic HealthRattusRecurrenceRecurrent diseaseScientistSirolimusSmooth Muscle MyocytesStentsStromal Cell-Derived Factor 1SurfaceSurgeonTechniquesTestingTimeToxic effectTunica AdventitiaVascular DiseasesVein graftcell behaviorcell transformationcopolymerdesignefficacy testingin vivoinjuredinnovationmigrationmortalitynanomedicinenanoparticlenovelnovel strategiespreventreceptorreconstructionrestenosissmall moleculesuccessuptake
项目摘要
Project Summary
Over 350,000 open surgical procedures to treat cardiovascular disease are performed each
year in the USA, with many more being performed worldwide. A great number of these
eventually fail due to intimal hyperplasia (IH), which is primarily caused by smooth muscle cell
(SMC) transformation from a quiescent to a pathogenic (proliferative, migratory, and
inflammatory) phenotype. Current clinical methods for preventing IH (e.g., drug-eluting stents)
are not applicable for traditional open surgical procedures such as bypass, endarterectomy, or
dialysis access. Thus, there is a notable lack of clinical options for delivery of drugs that block IH
following open cardiovascular surgery. We have developed a novel unimolecular nanoparticle
(NP) which provides a unique opportunity to meet this medical need through its multiple
favorable properties, which include excellent stability, the ability to provide sustained drug
release, and the chemical versatility for conjugation with ligands or molecules that target
periadventitial collagen (for the creation of a perivascular reservoir) or pathogenic SMCs (for
more precise control of IH). Our preliminary studies demonstrate that NPs are capable of
prolonging the release of the clinically used drug rapamycin, resulting in a more durable
inhibition of IH in an animal model of IH. The goal of this project is to develop a novel NP-
mediated multifunctional drug delivery platform that: (1) is readily applicable to the outer surface
of blood vessels at the time of open surgery, (2) produces sustained drug release for periods of
up to 3 months and beyond, and (3) specifically targets pathogenic SMCs thereby focusing
toxicity to these cells while sparing quiescent cells. To achieve sustained drug release, we will
generate a “perivascular NP reservoir” of rapamycin either by sequestering NPs around the
blood vessel using a hydrogel or by “painting” NPs onto the outer surface of the vessel. In the
latter case, the NPs are conjugated with a small molecule or peptide that facilitates their
attachment to the adventitia. To test the efficacy of targeted drug delivery, we will conjugate
NPs with ligands that bind to receptors that are highly expressed on the surface of pathogenic
SMCs. Thus, in Specific Aim 1, we will test the hypothesis that the perivascular application of a
rapamycin/NP reservoir maintained in a 1-month durable hydrogel produces sustained inhibition
of IH. In Specific Aim 2, we will test the hypothesis that a rapamycin/NP reservoir “painted” onto
the outer surface of the vessel produces sustained inhibition of IH. And in Specific Aim 3, we will
test the hypothesis that rapamycin/NPs capable of targeting pathogenic SMCs are more
efficacious in mitigating IH than non-targeted NPs. Our long-term goal is to create a perivascular
nanoplatform that can be readily applied at the time of open vascular reconstruction and is
effective in preventing recurrent vascular disease via durable and targeted drug delivery. We
believe that the success of these studies will be facilitated by a collaborative team including a
vascular surgeon scientist, a biomedical engineer and a biochemist, and will benefit hundreds of
thousands of patients.
项目摘要
每次都进行了超过350,000个治疗心血管疾病的开放手术程序
在美国一年,全球范围内还进行了更多演出。其中很多
由于内膜增生(IH)而失败,这主要是由平滑肌细胞引起的
(SMC)从静止转变为致病性(增殖者,迁移和
炎症)表型。当前预防IH的临床方法(例如,洗脱支架)
不适用于传统的开放手术程序,例如旁路,内部切除术或
透析访问。那是明显缺乏临床选择来阻止IH的药物
开放性心血管手术后。我们已经开发了一种新型的单分子纳米颗粒
(NP)提供了一个独特的机会,可以通过其多重
有利的特性,包括出色的稳定性,提供持续药物的能力
释放,以及与靶向的配体或分子结合的化学多功能性
周期胶原蛋白(用于创建血管周围的储层)或致病性SMC(用于
对IH的更精确控制)。我们的初步研究表明,NP能够
延长临床使用的药物雷帕霉素的释放,使得更耐用
在IH动物模型中抑制IH。该项目的目的是开发一种新颖的NP-
介导的多功能药物输送平台:(1)容易适用于外表面
开放手术时的血管,(2)产生持续的药物释放时间
最多3个月及以后,(3)专门针对致病SMC,从而聚焦
在保留静态细胞的同时,对这些细胞的毒性。为了获得持续的药物释放,我们将
通过隔离NP,生成雷帕霉素的“周围NP储层”
血管使用水凝胶或将NP“绘画”到容器的外表面上。在
后一种情况,NP与小分子或胡椒粉结合,以促进其
附着Addeditia。为了测试目标药物输送的效率,我们将共轭
NP具有与受体结合的配体在致病表面上高表达的受体
SMC。在特定目标1中,我们将检验以下假设。
雷帕霉素/NP储层维持在1个月耐用的水凝胶中会持续抑制
ih。在特定目标2中,我们将测试雷帕霉素/NP储层“涂在”上的假设
血管的外表面产生持续的IH抑制作用。在特定的目标3中,我们将
检验雷帕霉素/NP能够靶向致病性SMC的假设更多
比非靶向的NP容易缓解IH。我们的长期目标是创建一个血管周围
可以在开放血管重建时很容易应用的纳米文化形式,并且
通过耐用和靶向药物递送有效防止复发性血管疾病。我们
认为这些研究的成功将由一个合作团队准备,包括
血管外科医生科学家,生物医学工程师和生物化学家,将受益数百名
成千上万的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOQIN GONG其他文献
SHAOQIN GONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOQIN GONG', 18)}}的其他基金
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
- 批准号:
10630541 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10448923 - 财政年份:2022
- 资助金额:
$ 49.66万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10612911 - 财政年份:2022
- 资助金额:
$ 49.66万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10300745 - 财政年份:2021
- 资助金额:
$ 49.66万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10415193 - 财政年份:2021
- 资助金额:
$ 49.66万 - 项目类别:
Targeting PERK: An Endothelium-Protective Stent-Free Strategy for Mitigation of Intimal Hyperplasia After Vascular Surgery
靶向 PERK:一种缓解血管手术后内膜增生的内皮保护性无支架策略
- 批准号:
10320643 - 财政年份:2018
- 资助金额:
$ 49.66万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9177485 - 财政年份:2016
- 资助金额:
$ 49.66万 - 项目类别:
Targeted Therapy of Neuroendocrine Cancers Via the Notch Signaling Pathway
通过Notch信号通路靶向治疗神经内分泌癌
- 批准号:
9079433 - 财政年份:2013
- 资助金额:
$ 49.66万 - 项目类别:
相似国自然基金
多糖基复合气凝胶负载反式-2-己烯醛抑制草莓采后灰霉病的机制研究
- 批准号:32302183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柠檬醛酚酸肟酯熏蒸抑制黄曲霉毒素合成机理研究
- 批准号:32372459
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
铁基催化剂上合成气转化合成多碳醛酮的基础研究
- 批准号:22372165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
从Dectin-1/TLR协同介导的巨噬细胞免疫应答视角研究肉桂醛缓解白念珠菌定植下溃疡性结肠炎的作用机制
- 批准号:82374115
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于AgrA群体感应转录因子探究肉桂醛抑制单增李斯特菌生物膜及毒力的分子机制
- 批准号:32302181
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Replacing Aldehydes in Reductive Amination
在还原胺化中取代醛
- 批准号:
2870985 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别:
Studentship
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10702045 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别:
Role of Lysosome Damage in ALD Pathogenesis
溶酶体损伤在 ALD 发病机制中的作用
- 批准号:
10668006 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别:
Mechanism of action of Dapsone in Mycobacterium leprae
氨苯砜对麻风分枝杆菌的作用机制
- 批准号:
10643361 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别:
Catheter-injectable system for local drug delivery after myocardial infarct
用于心肌梗死后局部给药的导管注射系统
- 批准号:
10722614 - 财政年份:2023
- 资助金额:
$ 49.66万 - 项目类别: