Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance

刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略

基本信息

  • 批准号:
    10300745
  • 负责人:
  • 金额:
    $ 19.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Infectious diseases are a growing threat to public health owing to increasing antimicrobial resistance (AMR) and stagnation in new antibiotic development. Left unchecked, the annual number of deaths attributable to AMR is estimated to reach 10 million by 2050, exceeding deaths due to cancers and diabetes. Thus, there is an urgent need to develop innovative approaches to tackle this serious global crisis. We aim to develop innovative, highly efficient, and biocompatible pH- or ROS-responsive antimicrobial polymer- drug (i.e., antibiotics) conjugates (PDCs), which can effectively treat serious infectious diseases and overcome AMR while ensuring high biocompatibility. We will accomplish this goal utilizing existing FDA-approved antibiotics, disease-specific stimuli, and a uniquely engineered biocompatible cationic polymer. Cationic polymers can be effective antibiotic carriers as they can induce pores on the bacterial wall/membrane, thus significantly enhancing the transport of antibiotics into the bacteria and allowing them to bypass the efflux pump in the bacterial membrane. Cationic PDCs can also (1) stick to the bacteria’s surface, thereby serving as a drug reservoir to release drug locally, and (2) effectively infiltrate bacterial biofilms, thereby leading to deeper antibiotic penetration. The strong synergistic effects between cationic polymers and antibiotics diminish the intrinsic resistance of the pathogens, thus leading to significantly enhanced antimicrobial efficacy, especially for AMR pathogens. Antibiotics will be conjugated onto the cationic polymer via pH- or ROS-responsive linkers as the inflammatory microenvironment in infected tissues have low pH levels and high levels of reactive oxygen species (ROS). Furthermore, we engineered a GSH-cleavable and charge-reversal cationic polymer that can greatly reduce its systemic toxicity as well as cellular toxicity for mammalian cells. Lastly, PDC capable of stimuli (disease-specific)- controlled drug release can accumulate preferentially at the infected tissues due to the enhanced permeation and retention (EPR) effect, thereby further reducing systemic toxicity while achieving high antimicrobial efficacy. In Aim 1, we will design, synthesize and characterize pH- and ROS-responsive PDCs. We will first investigate the synergy between a number of free (i.e., before conjugation) FDA-approved antibiotics and our uniquely designed stimuli-responsive and charge-reversal biocompatible cationic polymer. In Aim 2, the antimicrobial and antibiofilm efficacies, drug resistance development profiles, and biocompatibilities of the resulting stimuli- responsive PDCs will be evaluated in multiple bacteria species. In Aim 3, we will systematically determine the maximum tolerated dose, in vivo biodistribution, antimicrobial efficacy, and potential systemic toxicity of the selected PDCs in three clinically relevant bacterial infection mouse models. This study will create a new class of PDCs based on the unique biocompatible cationic polymer we engineered, various FDA-approved antibiotics, and a number of stimuli-responsive linkers, which can effectively combat the prevalent AMR crisis and offer a general, yet effective and safe, solution to treat many types of infections.
项目概要 传染病对公共卫生债务构成日益严重的威胁,因为抗生素耐药性(AMR)不断增加, 如果不加以控制,新抗生素的开发停滞不前,每年因抗菌素耐药性导致的死亡人数为 预计到 2050 年,这一数字将达到 1000 万人,超过癌症和糖尿病造成的死亡人数。 需要制定创新方法来应对这一严重的全球危机。 我们的目标是开发创新、高效、生物相容性 pH 或 ROS 响应的抗菌聚合物 药物(即抗生素)结合物(PDC),可有效治疗严重感染性疾病并克服 AMR 同时确保高生物相容性,我们将利用 FDA 批准的现有抗生素来实现这一目标。 疾病特异性刺激和独特设计的生物相容性阳离子聚合物可以是。 有效的抗生素载体,因为它们可以在细菌壁/膜上诱导孔隙,从而显着增强 将抗生素输送到细菌中并允许它们绕过细菌中的外排泵 阳离子 PDC 还可以 (1) 粘附在细菌表面,从而充当药物储存库。 局部释放药物,(2)有效渗透细菌生物膜,从而导致抗生素更深的渗透。 阳离子聚合物和抗生素之间的强烈协同作用降低了细菌的内在耐药性 病原体,从而显着增强抗菌功效,特别是针对 AMR 病原体。 抗生素将通过 pH 或 ROS 响应性连接体缀合到阳离子聚合物上,作为炎症因子 受感染组织的微环境 pH 值较低,活性氧 (ROS) 水平较高。 此外,我们设计了一种 GSH 可裂解和电荷反转的阳离子聚合物,可以大大降低其 最后,PDC 能够刺激(疾病特异性)- 全身毒性以及对哺乳动物细胞的细胞毒性。 由于渗透性增强,受控药物释放可以优先在感染组织积聚 和保留(EPR)效应,进一步降低全身毒性,同时实现高抗菌功效。 在目标 1 中,我们将设计、合成和表征 pH 和 ROS 响应的 PDC。 FDA 批准的多种游离(即结合前)抗生素与我们独特的抗生素之间的协同作用 在目标 2 中,设计了刺激响应和电荷反转生物相容性阳离子聚合物。 抗菌膜功效、耐药性发展概况以及由此产生的刺激的生物相容性 在目标 3 中,我们将系统地确定响应性 PDC。 最大耐受剂量、体内生物分布、抗菌功效和潜在的全身毒性 在三种临床相关细菌感染小鼠模型中选择 PDC。 这项研究将基于我们设计的独特的生物相容性阳离子聚合物创建一类新型 PDC, 多种FDA批准的抗生素,以及多种刺激反应性连接物,可有效对抗 普遍存在的抗菌素耐药性危机,并提供一种通用但有效且安全的解决方案来治疗多种类型的感染。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHAOQIN GONG其他文献

SHAOQIN GONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHAOQIN GONG', 18)}}的其他基金

Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
  • 批准号:
    10668166
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
  • 批准号:
    10703696
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
  • 批准号:
    10630541
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
  • 批准号:
    10448923
  • 财政年份:
    2022
  • 资助金额:
    $ 19.17万
  • 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
  • 批准号:
    10612911
  • 财政年份:
    2022
  • 资助金额:
    $ 19.17万
  • 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
  • 批准号:
    10415193
  • 财政年份:
    2021
  • 资助金额:
    $ 19.17万
  • 项目类别:
Targeting PERK: An Endothelium-Protective Stent-Free Strategy for Mitigation of Intimal Hyperplasia After Vascular Surgery
靶向 PERK:一种缓解血管手术后内膜增生的内皮保护性无支架策略
  • 批准号:
    10320643
  • 财政年份:
    2018
  • 资助金额:
    $ 19.17万
  • 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
  • 批准号:
    9481524
  • 财政年份:
    2017
  • 资助金额:
    $ 19.17万
  • 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
  • 批准号:
    9177485
  • 财政年份:
    2016
  • 资助金额:
    $ 19.17万
  • 项目类别:
Targeted Therapy of Neuroendocrine Cancers Via the Notch Signaling Pathway
通过Notch信号通路靶向治疗神经内分泌癌
  • 批准号:
    9079433
  • 财政年份:
    2013
  • 资助金额:
    $ 19.17万
  • 项目类别:

相似国自然基金

针对抗菌素耐药性的新型诊断和预防技术开发
  • 批准号:
    82161138017
  • 批准年份:
    2021
  • 资助金额:
    300 万元
  • 项目类别:
    国际(地区)合作与交流项目
牛支原体生物被膜形成相关基因的鉴定和功能研究
  • 批准号:
    31402223
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
  • 批准号:
    10678074
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
  • 批准号:
    10604449
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
  • 批准号:
    10698829
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
Mechanisms of Candida auris Colonization in the Skin
耳念珠菌在皮肤中定植的机制
  • 批准号:
    10717197
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
Infection-Dependent Vulnerabilities of Gram-negative Bacterial Pathogens
革兰氏阴性细菌病原体的感染依赖性脆弱性
  • 批准号:
    10592676
  • 财政年份:
    2023
  • 资助金额:
    $ 19.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了