Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
基本信息
- 批准号:9177485
- 负责人:
- 金额:$ 55.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAldehydesAngioplastyAnimal ModelArteriesAvidinBehaviorBindingBiomedical EngineeringBiotinBlood VesselsBolus InfusionBypassCardiovascular DiseasesCardiovascular Surgical ProceduresCellsChemicalsClinicalCollagenComplexCountryDevelopmentDialysis procedureDrug Delivery SystemsDrug KineticsDrug usageEffectivenessEndarterectomyEvaluationFGF1 geneFibronectinsGelGoalsHeartHydrogelsHyperplasiaIn VitroIndividualInflammationInflammatoryInterventionKineticsLeadLigand BindingLigandsMeasuresMediatingMedicalMethodsMicellesModelingMorbidity - disease rateNanotechnologyOperative Surgical ProceduresPaintPathogenesisPatientsPeptidesPeripheralPharmaceutical PreparationsPhenotypePluronicsPropertyPublic HealthRattusRecurrenceRecurrent diseaseScientistSirolimusSmooth Muscle MyocytesStentsStromal Cell-Derived Factor 1SurfaceSurgeonTechniquesTestingTimeToxic effectTunica AdventitiaVascular DiseasesVein graftcell behaviorcell transformationchemical releasecopolymerdesignefficacy testingin vivoinjuredinnovationmeetingsmigrationmortalitynanomedicinenanoparticlenovelnovel strategiespreventreceptorreconstructionrestenosissmall moleculesuccessuptake
项目摘要
Project Summary
Over 350,000 open surgical procedures to treat cardiovascular disease are performed each
year in the USA, with many more being performed worldwide. A great number of these
eventually fail due to intimal hyperplasia (IH), which is primarily caused by smooth muscle cell
(SMC) transformation from a quiescent to a pathogenic (proliferative, migratory, and
inflammatory) phenotype. Current clinical methods for preventing IH (e.g., drug-eluting stents)
are not applicable for traditional open surgical procedures such as bypass, endarterectomy, or
dialysis access. Thus, there is a notable lack of clinical options for delivery of drugs that block IH
following open cardiovascular surgery. We have developed a novel unimolecular nanoparticle
(NP) which provides a unique opportunity to meet this medical need through its multiple
favorable properties, which include excellent stability, the ability to provide sustained drug
release, and the chemical versatility for conjugation with ligands or molecules that target
periadventitial collagen (for the creation of a perivascular reservoir) or pathogenic SMCs (for
more precise control of IH). Our preliminary studies demonstrate that NPs are capable of
prolonging the release of the clinically used drug rapamycin, resulting in a more durable
inhibition of IH in an animal model of IH. The goal of this project is to develop a novel NP-
mediated multifunctional drug delivery platform that: (1) is readily applicable to the outer surface
of blood vessels at the time of open surgery, (2) produces sustained drug release for periods of
up to 3 months and beyond, and (3) specifically targets pathogenic SMCs thereby focusing
toxicity to these cells while sparing quiescent cells. To achieve sustained drug release, we will
generate a “perivascular NP reservoir” of rapamycin either by sequestering NPs around the
blood vessel using a hydrogel or by “painting” NPs onto the outer surface of the vessel. In the
latter case, the NPs are conjugated with a small molecule or peptide that facilitates their
attachment to the adventitia. To test the efficacy of targeted drug delivery, we will conjugate
NPs with ligands that bind to receptors that are highly expressed on the surface of pathogenic
SMCs. Thus, in Specific Aim 1, we will test the hypothesis that the perivascular application of a
rapamycin/NP reservoir maintained in a 1-month durable hydrogel produces sustained inhibition
of IH. In Specific Aim 2, we will test the hypothesis that a rapamycin/NP reservoir “painted” onto
the outer surface of the vessel produces sustained inhibition of IH. And in Specific Aim 3, we will
test the hypothesis that rapamycin/NPs capable of targeting pathogenic SMCs are more
efficacious in mitigating IH than non-targeted NPs. Our long-term goal is to create a perivascular
nanoplatform that can be readily applied at the time of open vascular reconstruction and is
effective in preventing recurrent vascular disease via durable and targeted drug delivery. We
believe that the success of these studies will be facilitated by a collaborative team including a
vascular surgeon scientist, a biomedical engineer and a biochemist, and will benefit hundreds of
thousands of patients.
项目概要
每年进行超过 350,000 例治疗心血管疾病的开放式外科手术
今年在美国演出,还有更多的演出在世界各地演出。
最终由于内膜增生(IH)而失败,这主要是由平滑肌细胞引起的
(SMC)从静止状态转变为致病状态(增殖性、迁移性和
目前预防 IH 的临床方法(例如药物洗脱支架)
不适用于传统的开放式外科手术,例如搭桥术、动脉内膜切除术或
因此,明显缺乏阻断 IH 药物的临床选择。
在开放式心血管手术之后,我们开发了一种新型单分子纳米颗粒。
(NP)通过其多种方式提供了满足这种医疗需求的独特机会
良好的特性,包括优异的稳定性、提供持续药物的能力
释放,以及与靶向配体或分子缀合的化学多功能性
外膜周围胶原蛋白(用于形成血管周围储库)或致病性 SMC(用于
我们的初步研究表明 NP 能够更精确地控制 IH。
延长临床使用的药物雷帕霉素的释放,从而产生更持久的效果
在 IH 动物模型中抑制 IH 该项目的目标是开发一种新型 NP-
介导的多功能药物递送平台:(1)易于应用于外表面
开放手术时的血管,(2)产生持续的药物释放
长达 3 个月及以上,并且 (3) 专门针对致病性 SMC,从而集中
为了实现药物的持续释放,我们将对这些细胞产生毒性,同时不影响静止细胞。
通过将纳米颗粒隔离在血管周围,产生雷帕霉素的“血管周围纳米颗粒储存库”
使用水凝胶或通过将纳米颗粒“涂”到血管的外表面来形成血管。
在后一种情况下,纳米粒子与小分子或肽缀合,以促进其
为了测试靶向药物递送的功效,我们将缀合。
带有配体的纳米颗粒可以与病原体表面高表达的受体结合
因此,在具体目标 1 中,我们将检验血管周围应用的假设。
雷帕霉素/NP 储存库保存在 1 个月的耐用水凝胶中,产生持续的抑制作用
在 IH 的具体目标 2 中,我们将测试雷帕霉素/NP 储库“绘制”到的假设。
血管的外表面产生持续的 IH 抑制,在具体目标 3 中,我们将。
检验能够靶向致病性 SMC 的雷帕霉素/纳米粒子更有效的假设
与非靶向 NP 相比,它能更有效地缓解 IH。我们的长期目标是创造一种血管周围的药物。
纳米平台可以在开放血管重建时轻松应用,并且
通过持久和有针对性的药物输送,有效预防复发性血管疾病。
相信包括以下人员在内的合作团队将促进这些研究的成功
血管外科医生科学家、生物医学工程师和生物化学家,将使数百人受益
数千名患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOQIN GONG其他文献
SHAOQIN GONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOQIN GONG', 18)}}的其他基金
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
- 批准号:
10630541 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10448923 - 财政年份:2022
- 资助金额:
$ 55.33万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10612911 - 财政年份:2022
- 资助金额:
$ 55.33万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10300745 - 财政年份:2021
- 资助金额:
$ 55.33万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10415193 - 财政年份:2021
- 资助金额:
$ 55.33万 - 项目类别:
Targeting PERK: An Endothelium-Protective Stent-Free Strategy for Mitigation of Intimal Hyperplasia After Vascular Surgery
靶向 PERK:一种缓解血管手术后内膜增生的内皮保护性无支架策略
- 批准号:
10320643 - 财政年份:2018
- 资助金额:
$ 55.33万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9481524 - 财政年份:2017
- 资助金额:
$ 55.33万 - 项目类别:
Targeted Therapy of Neuroendocrine Cancers Via the Notch Signaling Pathway
通过Notch信号通路靶向治疗神经内分泌癌
- 批准号:
9079433 - 财政年份:2013
- 资助金额:
$ 55.33万 - 项目类别:
相似国自然基金
NNMT调控METTL14/β-catenin信号轴促进食管鳞癌醛类VOCs产生的机制研究和检测模型的构建
- 批准号:82303567
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醛脱氢酶2调控醛类代谢-SIRT1-内质网应激通路抑制视网膜感光细胞凋亡的作用机制研究
- 批准号:82301245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
亚麻籽酚类化合物油相迁移对籽油C5-C9醛类特征香气生成的影响机制
- 批准号:32360631
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
碱性离子液体插层木薯淀粉基多孔材料构筑及高湿下对醛类VOCs高选择性吸附
- 批准号:22368005
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
绿色构筑金属硅化物用于电化学加氢生物质基醛类化合物
- 批准号:22378434
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Replacing Aldehydes in Reductive Amination
在还原胺化中取代醛
- 批准号:
2870985 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别:
Studentship
Epigenetically regulated stemness program and stem cell niche as targets in pediatric DIPG
表观遗传调控的干细胞程序和干细胞生态位作为儿科 DIPG 的目标
- 批准号:
10635435 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别:
Catheter-injectable system for local drug delivery after myocardial infarct
用于心肌梗死后局部给药的导管注射系统
- 批准号:
10722614 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别:
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别:
Role of Lysosome Damage in ALD Pathogenesis
溶酶体损伤在 ALD 发病机制中的作用
- 批准号:
10668006 - 财政年份:2023
- 资助金额:
$ 55.33万 - 项目类别: