Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer

自噬介导的化疗耐药肺癌生存的计算模型

基本信息

  • 批准号:
    9547104
  • 负责人:
  • 金额:
    $ 48.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Autophagy is a complex intracellular recycling program associated with tumor progression and cancer cell survival. Researchers still lack strategies to effectively target this process, and an understanding of when to apply such strategies. Oncogenic stress, such as that elicited by mutant KRAS, can activate autophagy to promote cancer cell survival. Importantly, KRAS mutations are linked to 40% of lung cancer deaths in the U.S. each year. Therefore, we propose an innovative, multidisciplinary research project that investigates autophagy in connection with KRAS: we will integrate predictive computational modeling and high-quality cell-based measurements to accurately model the autophagic process in KRAS-driven lung cancer. We anticipate that our model will help identify the most effective therapeutic strategies for targeting autophagy in cancer. Specific Aim #1: Validate a mechanistic model of the core autophagy pathway to predict targets for the effective inhibition of autophagy. We have specified a mechanistic model through "rules" that capture the key biological processes comprising the autophagy pathway. To validate this model, we measured how the individual steps of autophagy respond to physiological and oncogenic stressors, and systematic RNAi perturbations. Here, we propose to tune the model to align with quantitative data, and test predictions of the rate-limiting steps. This framework will explore the possibility that autophagy is controlled by a bistable switch, an intriguing model-derived hypothesis with therapeutic relevance. As part of this aim, we will identify effective autophagy inhibitors in wildtype and mutant KRAS backgrounds. Specific Aim #2: Model the relationship of autophagy and cell fate to test therapeutic predictions for KRAS-driven lung cancer. The autophagy model will be extended to investigate the relationship between autophagic flux and cell survival and death. For this effort, we will implement an innovative data-driven approach, which involves defining relationships between measured inputs (signaling readouts) and outputs (autophagic flux, survival, and death) in datasets. We will use this model and patient-derived cell lines to predict the therapeutic benefit of inhibiting autophagy in KRAS-driven lung cancer. Our collaborative research brings mechanistic modeling and cell biology experts together for a project that is highly relevant and valuable to public health. Mechanistic modeling was used by Los Alamos National Laboratory after World War II to assist with complex nuclear fission devices like the atomic bomb. We will use modeling to predict complex cancer cell behavior, with the ultimate goal of contributing a valuable weapon to the "war on cancer."
 描述(通过应用程序证明):自噬是一个复杂的填充物。生存。策略忘记了cancif中的星际目标。生理和致癌应激源,以及系统的RNAi扰动。 通过可衍生的模型的假设,我们将在野生型和突变的KRAS背景中控制自动抑制剂,从而通过可引人入胜的假设来控制双重的模型。 . Utophagic Flux and Cell Survival and Death. For the Effort, we will iment an innovative data-driven approach. ships Between Measured Inputs (Signaling Readouts) and Outputs (Autophagic Flux, Survival, and Death) in Datasets. derived cell 预测抑制自噬驱动的肺罐头的治疗益处。癌细胞行为的最终目标是为“癌症战争”贡献有价值的武器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William S Hlavacek其他文献

William S Hlavacek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William S Hlavacek', 18)}}的其他基金

System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
  • 批准号:
    10399590
  • 财政年份:
    2021
  • 资助金额:
    $ 48.42万
  • 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
  • 批准号:
    10211871
  • 财政年份:
    2021
  • 资助金额:
    $ 48.42万
  • 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
  • 批准号:
    10558581
  • 财政年份:
    2020
  • 资助金额:
    $ 48.42万
  • 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
  • 批准号:
    10337242
  • 财政年份:
    2020
  • 资助金额:
    $ 48.42万
  • 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
  • 批准号:
    9769647
  • 财政年份:
    2017
  • 资助金额:
    $ 48.42万
  • 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
  • 批准号:
    9139424
  • 财政年份:
    2015
  • 资助金额:
    $ 48.42万
  • 项目类别:
Hardening Software for Rule-based models-Competitive Revision
基于规则的模型的强化软件 - 竞争性修订
  • 批准号:
    10382135
  • 财政年份:
    2014
  • 资助金额:
    $ 48.42万
  • 项目类别:
Hardening Software for Rule-based Modeling
用于基于规则的建模的强化软件
  • 批准号:
    10615068
  • 财政年份:
    2014
  • 资助金额:
    $ 48.42万
  • 项目类别:
Hardening Software for Rule-based Modeling.
用于基于规则的建模的强化软件。
  • 批准号:
    8898854
  • 财政年份:
    2014
  • 资助金额:
    $ 48.42万
  • 项目类别:
Hardening Software for Rule-based Modeling
用于基于规则的建模的强化软件
  • 批准号:
    10165739
  • 财政年份:
    2014
  • 资助金额:
    $ 48.42万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

PATHS
路径
  • 批准号:
    10707898
  • 财政年份:
    2022
  • 资助金额:
    $ 48.42万
  • 项目类别:
Neuroimaging & Neurocircuitry Core
神经影像学
  • 批准号:
    10678901
  • 财政年份:
    2021
  • 资助金额:
    $ 48.42万
  • 项目类别:
Core E: Outreach, Recruitment, and Engagement Core
核心 E:外展、招聘和参与核心
  • 批准号:
    10663301
  • 财政年份:
    2021
  • 资助金额:
    $ 48.42万
  • 项目类别:
Outreach, Recruitment & Engagement Core
外展、招聘
  • 批准号:
    10601063
  • 财政年份:
    2019
  • 资助金额:
    $ 48.42万
  • 项目类别:
Enrichment and Research Administration Core
浓缩和研究管理核心
  • 批准号:
    10686304
  • 财政年份:
    2018
  • 资助金额:
    $ 48.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了