Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
基本信息
- 批准号:10337242
- 负责人:
- 金额:$ 67.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectBAY 54-9085BRAF geneBehaviorBindingBiochemicalBiological ModelsCaco-2 CellsCancer cell lineCell LineCell ProliferationCell modelCellsClinicClinicalColorectal CancerComplexComputer ModelsCoupledDataDrug CombinationsDrug ControlsDrug TargetingDrug resistanceEffectivenessFeedbackFoundationsFree EnergyGeneticGenetically Engineered MouseGoalsGrowthIn VitroKSR geneKineticsKnock-outLinkMAP Kinase GeneMEKsMalignant NeoplasmsMelanoma CellModelingMolecularMolecular BiologyMolecular ConformationMutateMutationOncogenicPathway interactionsPharmaceutical PreparationsPhosphotransferasesPositioning AttributePropertyProtein IsoformsProtein KinaseProteinsRecoveryRegulationResistanceScaffolding ProteinSignal PathwaySignal TransductionSignaling ProteinSpecificitySystemSystems BiologyTestingTherapeuticThermodynamicsTimeValidationWorkXenograft procedurebasecell transformationclinical efficacydimerdrug efficacydrug sensitivityexperimental studyin vivoinhibitorkinase inhibitorknock-downmathematical modelmelanomamolecular dynamicsmolecular scalemulti-scale modelingnext generationnovelnovel strategiesoverexpressionpatient derived xenograft modelprecision medicinepredictive modelingpreventprotein expressionresponsescaffoldsmall molecule inhibitorstandard of caresuccesstargeted treatmenttherapy resistanttooltumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Small molecule inhibitors targeting the RAF/MEK/ERK pathway have become potent tools in precision medicine,
but their clinical efficacy is highly variable across the diversity of RAS- and BRAF-mutated cancers. Even in
susceptible cancers, these inhibitors rarely give durable responses. Studying the causes of resistance, which
include ‘paradoxical’ ERK pathway activation by RAF inhibitors, has revealed complex molecular adaptations in
the complicated networks comprised of RAF and ERK pathway kinases. These complexities limit our ability to
understand and predict effectiveness of targeted therapies, especially in combination – despite decades of
intense study, including mathematical modeling. Accurate predictions require understanding not only of the
molecular complexities of protein kinase regulation and the intricate systems-level behavior of the networks that
kinase constitute, but also of how these two levels of control are coupled. The challenge of accurately predicting
effectiveness of targeted therapies and their combinations therefore demands an amalgamation of molecular
and systems biology approaches. The systems biology project proposed here aims to identify optimal
combinations of kinase inhibitors through mechanistic models that integrate understanding of both:
1) Conformation selectivity of kinase inhibitors – affecting structural, thermodynamic and kinetic properties of the
targeted kinase(s); and 2) Systems-level network properties, including feedback loops, mutations and
kinase/scaffold abundances, which can modify feedback loops and allow normally inconsequential kinase
isoforms to compensate for isoform-specific kinase inhibition. Combining these features necessitates novel
approaches to modeling cell signaling that directly link molecular/structural and network facets to predict which
inhibitors and their combinations can efficiently suppress oncogenic signaling while disabling or delaying signal
recovery, growth, and drug resistance. We propose to develop such next-generation multiscale models of
oncogenic ERK signaling and drug responses, and to establish a new conceptual foundation for discovering
effective drug combinations by integrating structural, thermodynamic and kinetic information – and combining
short time-scale molecular dynamics (MD) with long time-scale modeling of systems-level dynamics. We will test
our model predictions rigorously by integrating and iterating modeling and experimental studies. Experimental
studies will begin in paired isogenic cancer cell lines with defined mutational differences. Once model predictions
are suitably robust, we will progress to panels of cancer cell lines, then to cell line-derived xenografts in vivo,
and then to patient-derived xenografts and genetically engineered mouse models (GEMMs) of melanoma – as
a presage to clinically integrated predictions. We will determine if the strategy of hitting a kinase by two (or more)
inhibitors with distinct conformation selectivity – as appears promising in our preliminary data – is generally
applicable, can be combined with inhibition of different targets within a pathway, and can be understood at a
detailed mechanistic level using our multiscale models.
项目摘要/摘要
针对RAF/MEK/ERK途径的小分子抑制剂已成为精密医学的有效工具,
但是它们的临床效率在RAS和BRAF突变的癌症的多样性中差异很大。甚至在
易感癌症,这些抑制剂很少会产生持久的反应。研究抵抗的原因,这是
包括RAF抑制剂激活的“悖论” ERK途径,揭示了复杂的分子适应
RAF和ERK途径激酶的复杂网络完成。这些复杂性限制了我们的能力
了解和预测有针对性疗法的有效性,尤其是在组合中 - 多斯特数十年
激烈的研究,包括数学建模。准确的预测不仅需要了解
蛋白激酶调节的分子复杂性和网络的复杂系统级行为
激酶构成,也构成了这两个级别的控制级别。准确预测的挑战
因此,靶向疗法及其组合的有效性需要分子合并
和系统生物学方法。这里提出的系统生物学项目旨在确定最佳
通过整合对这两者的理解的机械模型来组合激酶抑制剂:
1)激酶抑制剂的构象选择性 - 影响结构,热力学和动力学特性
靶向激酶; 2)系统级网络属性,包括反馈循环,突变和
激酶/支架丰度,可以修改反馈回路并允许通常无关紧要的激酶
同工型补偿同工型特异性激酶抑制。将这些功能结合在一起必要的新颖
建模细胞信号传导的方法,该电池信号传导直接连接分子/结构和网络方面以预测哪个
抑制剂及其组合可以有效抑制致癌信号传导,同时禁用或延迟信号
恢复,生长和耐药性。我们建议开发此类下一代的多尺度模型
致癌ERK信号和药物反应,并建立一个新的概念基础来发现
通过整合结构,热力学和动力学信息并结合有效的药物组合
短时间分子动力学(MD),具有系统级动力学的长时间建模。我们将测试
我们的模型通过整合和迭代建模和实验研究来严格预测。实验
研究将从具有明确的突变差异的配对的等源性癌细胞系开始。一旦模型预测
非常健壮,我们将发展到癌细胞系的面板,然后在体内到细胞系衍生的异种移植物,
然后到患者衍生的Xenographictics和Genetsgript的小鼠模型(GEMM),如
临床整合预测的预示。我们将确定通过两个(或更多)打击激酶的策略
具有独特构象选择性的抑制剂(在我们的初步数据中似乎有希望)通常是
适用,可以与途径内不同目标的抑制结合,可以在
使用我们的多尺度模型的详细机械级别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William S Hlavacek其他文献
William S Hlavacek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William S Hlavacek', 18)}}的其他基金
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10399590 - 财政年份:2021
- 资助金额:
$ 67.44万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 67.44万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 67.44万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9547104 - 财政年份:2017
- 资助金额:
$ 67.44万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9769647 - 财政年份:2017
- 资助金额:
$ 67.44万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9139424 - 财政年份:2015
- 资助金额:
$ 67.44万 - 项目类别:
Hardening Software for Rule-based models-Competitive Revision
基于规则的模型的强化软件 - 竞争性修订
- 批准号:
10382135 - 财政年份:2014
- 资助金额:
$ 67.44万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 67.44万 - 项目类别:
Improving Longitudinal Quality of Life Assessment in Hepatocellular Carcinoma
改善肝细胞癌的纵向生活质量评估
- 批准号:
8568295 - 财政年份:2013
- 资助金额:
$ 67.44万 - 项目类别:
Improving Longitudinal Quality of Life Assessment in Hepatocellular Carcinoma
改善肝细胞癌的纵向生活质量评估
- 批准号:
8692696 - 财政年份:2013
- 资助金额:
$ 67.44万 - 项目类别: