Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
基本信息
- 批准号:9237753
- 负责人:
- 金额:$ 35.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAnisotropyBone RegenerationCalvariaCell physiologyCellsClinicalCuesDataDefectDevelopmentDimensionsEngineeringEnvironmentExtracellular MatrixFocused UltrasoundFrequenciesGoalsHistologyHydrogelsImageIn VitroJointsKnowledgeLeadLengthMeasuresMechanical StimulationMechanicsMesenchymal DifferentiationMesenchymal Stem CellsMethodsMineralsModalityModelingMonitorMusculoskeletalNatural regenerationOsteogenesisPeriodicityPhenotypePlayPropertyPulse PressureRadiationRegenerative MedicineRelaxationResolutionRoleSamplingSpinal FusionStem cellsStressStress TestsSystemTechniquesTestingTherapeuticTherapeutic InterventionThree-dimensional analysisTimeTissue EngineeringTissuesUltrasonographyWorkbasebonecell dimensiondesignelastographyhealingimprovedimproved outcomein vivoin vivo regenerationinnovationinsightmechanical forcemechanical propertiesmicroCTosteogenicphysical propertypressureradiofrequencyresponsespatiotemporaltissue regenerationtooltwo-dimensionalviscoelasticity
项目摘要
Project Summary
Mechanical forces are a key component of the cellular microenvironment, and are well established to have
potent effects on cells and tissues. The passive mechanical properties of two-dimensional cell substrates and
three-dimensional extracellular matrices have been shown to influence progenitor cell phenotype and can be
used to direct cell function. In addition, active stimulation of cells and tissues using externally applied forces
has been applied at both the cell and tissue level to induce a variety of responses. Mechanobiology is
particularly relevant to musculoskeletal tissues, but there is a gap in our understanding of the physical
properties of the tissue environment on length scales that cells sense. This project builds on preliminary work
by the project team in applying advanced ultrasound techniques to studying the microscale physical properties
of engineered musculoskeletal tissues composed of cell-seeded mineralizing hydrogels. It integrates spectral
ultrasound imaging (SUSI), dual-mode ultrasound elastography (DUE), and ultrasound-induced compressive
stimulation. SUSI is a technique that uses the backscattered radiofrequency spectrum to derive information
about the composition of a sample. DUE applies acoustic radiation force to deform hydrogels and measure
their mechanical properties. Focused ultrasound-induced compression also applies acoustic pressure to
mechanically stimulate tissues. A key feature of ultrasound techniques is that they are noninvasive and
therefore can be used to study developing tissues over time. In addition, imaging and deformation can be
applied at sub-millimeter resolution. This project will combine these advanced ultrasound techniques to create
a system that can comprehensively characterize and stimulate engineered musculoskeletal tissues at the
microscale. The target application is to potentiate bone formation using mesenchymal stem cells (MSC)
embedded in a 3D hydrogel matrix. The Specific Aims are 1) to integrate spectral ultrasound imaging (SUSI)
and dual-mode ultrasound elastography (DUE) to compositionally and mechanically characterize mineralizing
tissues, 2) to probe the effects of passive matrix mechanical properties on MSC phenotype using SUSI-DUE,
3) to actively stimulate osteogenic differentiation of MSC in hydrogel matrices using ultrasound-induced cyclic
compression, and 4) to apply SUSI-DUE to catalyze and monitor bone regeneration in vivo. This project will
investigate musculoskeletal mechanobiology using an innovative new tool that could have important impact on
regenerative medicine. The long term goal is a therapeutic intervention to potentiate bone formation in
indications where accelerated healing would lead to improved outcomes, such as treatment of non-unions and
recalcitrant spinal fusions.
项目概要
机械力是细胞微环境的关键组成部分,并且已被广泛证实
对细胞和组织的有效作用。二维电池基底的被动机械性能和
三维细胞外基质已被证明可以影响祖细胞表型,并且可以
用于指导细胞功能。此外,利用外力主动刺激细胞和组织
已应用于细胞和组织水平以诱导多种反应。力学生物学是
与肌肉骨骼组织特别相关,但我们对物理的理解存在差距
组织环境在细胞感知的长度尺度上的特性。该项目建立在前期工作的基础上
项目团队应用先进的超声波技术来研究微观物理特性
由细胞接种的矿化水凝胶组成的工程肌肉骨骼组织。它集成了光谱
超声成像 (SUSI)、双模式超声弹性成像 (DUE) 和超声诱导压缩
刺激。 SUSI 是一种利用反向散射射频频谱来获取信息的技术
关于样品的组成。 DUE 应用声辐射力使水凝胶变形并测量
他们的机械性能。聚焦超声引起的压缩也将声压施加到
机械刺激组织。超声技术的一个关键特点是它们是非侵入性的
因此可用于研究随着时间的推移发育的组织。此外,成像和变形可以
以亚毫米分辨率应用。该项目将结合这些先进的超声技术来创建
一个可以全面表征和刺激工程肌肉骨骼组织的系统
微量。目标应用是利用间充质干细胞 (MSC) 增强骨形成
嵌入 3D 水凝胶基质中。具体目标是 1) 集成频谱超声成像 (SUSI)
和双模式超声弹性成像 (DUE) 来表征矿化的成分和机械特征
组织,2) 使用 SUSI-DUE 探讨被动基质机械特性对 MSC 表型的影响,
3)利用超声诱导的循环积极刺激水凝胶基质中MSC的成骨分化
压缩,4) 应用 SUSI-DUE 催化和监测体内骨再生。该项目将
使用可能对肌肉骨骼力学生物学产生重要影响的创新工具进行研究
再生医学。长期目标是通过治疗干预来增强骨形成
加速愈合将导致改善结果的迹象,例如不愈合和不愈合的治疗
顽固性脊柱融合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHERI X DENG其他文献
CHERI X DENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHERI X DENG', 18)}}的其他基金
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10274928 - 财政年份:2021
- 资助金额:
$ 35.41万 - 项目类别:
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10675739 - 财政年份:2021
- 资助金额:
$ 35.41万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9974508 - 财政年份:2017
- 资助金额:
$ 35.41万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
10223264 - 财政年份:2017
- 资助金额:
$ 35.41万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
8896236 - 财政年份:2015
- 资助金额:
$ 35.41万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9206500 - 财政年份:2015
- 资助金额:
$ 35.41万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9049494 - 财政年份:2015
- 资助金额:
$ 35.41万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8637285 - 财政年份:2014
- 资助金额:
$ 35.41万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8925077 - 财政年份:2014
- 资助金额:
$ 35.41万 - 项目类别:
Quantitative Ultrasound Imaging for Noninvasive Assessment of Engineered Tissues
用于工程组织无创评估的定量超声成像
- 批准号:
8583800 - 财政年份:2013
- 资助金额:
$ 35.41万 - 项目类别:
相似国自然基金
各向异性介质中的超声兰姆导波波前调控及新原理集成化功能器件研究
- 批准号:12374438
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
各向异性柔性覆层湍流边界层直接数值模拟研究
- 批准号:12362022
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
带电流型畸变校正的大地电磁三维各向异性自适应反演研究
- 批准号:42304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
翁通爪哇洋底高原及其周边壳幔三维各向异性速度结构及构造意义
- 批准号:42376080
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高各向异性FeCoNi/碳纳米管-石墨烯复合材料的多场耦合构筑及其低频超宽带吸波性能
- 批准号:52301239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of in situ orientation on quantitative MR-based measures of cartilage endplate health
原位定向对基于 MR 的软骨终板健康定量测量的影响
- 批准号:
10607735 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Regenerative engineering for complex extremity trauma
复杂肢体创伤的再生工程
- 批准号:
10584227 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 35.41万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
$ 35.41万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 35.41万 - 项目类别: