Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
基本信息
- 批准号:8925077
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsActinsAdultAffectAreaAttentionBiological AssayBone DiseasesCell Culture SystemCell Culture TechniquesCell TherapyCell membraneCellsCuesCytometryCytoskeletonDevelopmentDevelopmental BiologyEnvironmentFoundationsFrequenciesFutureGeometryGoalsHealedHealthHumanImplantIn VitroInvestigationLaboratoriesLibrariesLifeLipidsLiquid substanceLocationMaintenanceMeasurementMeasuresMechanicsMediatingMesenchymal Stem CellsMethodologyMicrobubblesMolecular TargetMonitorMyosin ATPaseMyosin Type IIOsteoblastsOsteogenesisOsteoporosisPathologyPlayProcessRegulationResearchResponse to stimulus physiologyRoleSignal TransductionStretchingSurfaceSystemTechniquesTherapeuticTherapeutic InterventionTimeTissuesTractionUltrasonographyadhesion receptoranalogbasebonebone massdesignelastomericexperiencehealinghuman stem cellsimprovedinnovationinsightinterdisciplinary approachlaser tweezernovelnovel strategiesoperationosteogenicpolymerizationprecursor cellregenerative therapyresponsesensorshear stresssolid statespatiotemporalstem cell biologystem cell differentiationstem cell fatetool
项目摘要
DESCRIPTION (provided by applicant): The long term objective of this research is to develop an interdisciplinary approach to enhance Human mesenchymal stem cell (hMSC) osteogenic differentiation in vitro, in order to advance cell-based therapies for degenerative bone diseases such as osteoporosis. Human mesenchymal stem cells (hMSCs) are precursor cells that form and heal nearly all of the mechanical tissues in humans, including bone. hMSCs are now being isolated from adults to explore whether these cells can be differentiated into osteoblasts in vitro
and re-implanted as a cellular therapy to arrest or even reverse degenerative bone diseases such as osteoporosis. While some initial promising progress has been made in demonstrating the mechanoresponsive regulation of hMSC osteogenesis by matrix rigidity and external mechanical forces, in vitro cell culture conditions for hMSC osteogenesis still remain suboptimal.
We hypothesize that a versatile in vitro cell culture system that allows for a rapid and reversible
dynamic mechanical regulation of cell culture environment will enable an improved control of osteogenic differentiation of hMSCs. To enhance in vitro hMSC osteogenesis and further aid in mechanistic investigation of the mechanotransductive system in hMSCs, we propose to develop a novel, interdisciplinary approach combining two novel microengineering techniques developed from laboratories of the two co-PIs of this proposal, to precisely modulate dynamic subcellular mechanical forces while simultaneously measuring live- cell subcellular responses of cytoskeleton contractility of hMSCs. These novel tools include 1) A standardized library of elastomeric micropost arrays to precisely regulate substrate rigidity and as non-destructive live-cell traction force sensors for subcellular quantification of cytoskeleton contractility; and 2) A novel "acoustic tweezer" capable of generating controlled mechanical forces to specific adhesion receptors on cell membrane, as a unique strategy to apply external forces affecting cytoskeleton contractility. Our specific aims are: 1) To characterize spatiotemporal changes of hMSC cytoskeCSK contractility induced by ultrasound tweezers; 2) To characterize how ultrasound tweezers exert mechanical perturbations to regulate osteogenic differentiation of hMSCs; and 3) To characterize how RhoA/ROCK/myosin signaling axis is involved in intracellular force transduction from ultrasound tweezers in hMSCs. Results from this research are expected to advance our current understanding of mechanotransduction in hMSCs to provide a pivotal foundation for enhancing their osteogenic differentiation. Improved understanding the mechanotransduction system in hMSCs may provide fundamental insights into hMSC biology, as well as practical approaches to improve hMSC differentiation in vitro for cell-based therapeutic applications for treating bone diseases.
描述(由申请人提供):本研究的长期目标是开发一种跨学科方法来增强人间充质干细胞(hMSC)体外成骨分化,以推进针对骨质疏松症等退行性骨疾病的细胞疗法。 人类间充质干细胞 (hMSC) 是形成和治愈人类几乎所有机械组织(包括骨骼)的前体细胞。目前正在从成人体内分离 hMSC,以探索这些细胞是否可以在体外分化为成骨细胞
并作为细胞疗法重新植入,以阻止甚至逆转骨质疏松症等退行性骨疾病。虽然在证明基质刚性和外部机械力对 hMSC 成骨的机械响应调节方面已经取得了一些初步有希望的进展,但 hMSC 成骨的体外细胞培养条件仍然不够理想。
我们假设一种多功能的体外细胞培养系统可以实现快速且可逆的细胞培养。
细胞培养环境的动态机械调节将能够改善对 hMSC 成骨分化的控制。为了增强体外 hMSC 成骨并进一步帮助 hMSC 中机械传导系统的机制研究,我们建议开发一种新颖的跨学科方法,结合本提案的两个共同 PI 实验室开发的两种新颖的微工程技术,以精确调节动态亚细胞机械力,同时测量 hMSC 细胞骨架收缩性的活细胞亚细胞反应。这些新颖的工具包括:1)标准化的弹性体微柱阵列库,可精确调节基底刚性,并作为非破坏性活细胞牵引力传感器,用于细胞骨架收缩性的亚细胞定量; 2)一种新型“声学镊子”,能够对细胞膜上的特定粘附受体产生受控机械力,作为施加影响细胞骨架收缩性的外力的独特策略。 我们的具体目标是:1)表征超声镊子诱导的 hMSC cytoskeCSK 收缩力的时空变化; 2) 表征超声镊子如何施加机械扰动来调节 hMSC 的成骨分化; 3) 表征 RhoA/ROCK/肌球蛋白信号轴如何参与 hMSC 中超声镊子的细胞内力传导。这项研究的结果预计将增进我们目前对 hMSC 力转导的理解,为增强其成骨分化提供关键基础。更好地了解 hMSC 中的力转导系统可能会提供对 hMSC 生物学的基本见解,以及改善 hMSC 体外分化的实用方法,以用于治疗骨疾病的细胞治疗应用。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis.
- DOI:10.1038/nmat4654
- 发表时间:2016-09
- 期刊:
- 影响因子:41.2
- 作者:Weng S;Shao Y;Chen W;Fu J
- 通讯作者:Fu J
Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation.
- DOI:10.1016/j.biomaterials.2017.04.039
- 发表时间:2017-07
- 期刊:
- 影响因子:14
- 作者:Xue X;Hong X;Li Z;Deng CX;Fu J
- 通讯作者:Fu J
On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology.
- DOI:10.1016/j.biomaterials.2015.01.078
- 发表时间:2015-06
- 期刊:
- 影响因子:14
- 作者:Shao, Yue;Sang, Jianming;Fu, Jianping
- 通讯作者:Fu, Jianping
Controlled Tubular Unit Formation from Collagen Film for Modular Tissue Engineering.
用于模块化组织工程的胶原膜受控管状单元形成。
- DOI:10.1021/acsbiomaterials.6b00468
- 发表时间:2017
- 期刊:
- 影响因子:5.8
- 作者:Sang,Jianming;Li,Xiang;Shao,Yue;Li,Zida;Fu,Jianping
- 通讯作者:Fu,Jianping
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHERI X DENG其他文献
CHERI X DENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHERI X DENG', 18)}}的其他基金
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10274928 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10675739 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9237753 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9974508 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
10223264 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
8896236 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9206500 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9049494 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8637285 - 财政年份:2014
- 资助金额:
$ 19.44万 - 项目类别:
Quantitative Ultrasound Imaging for Noninvasive Assessment of Engineered Tissues
用于工程组织无创评估的定量超声成像
- 批准号:
8583800 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别:
相似国自然基金
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Understanding the Role of Actin-Bundling Protein Supervillin in the Development and the Function of the Cuticular Plate of the Mechanosensory Hair Cells in Zebrafish
了解肌动蛋白捆绑蛋白超级绒毛蛋白在斑马鱼机械感觉毛细胞角质板的发育和功能中的作用
- 批准号:
9567439 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8637285 - 财政年份:2014
- 资助金额:
$ 19.44万 - 项目类别:
The roles of gasdermins in progressive hearing loss
Gasdermin 在进行性听力损失中的作用
- 批准号:
8562981 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别:
The roles of gasdermins in progressive hearing loss
Gasdermin 在进行性听力损失中的作用
- 批准号:
8874952 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别:
The roles of gasdermins in progressive hearing loss
Gasdermin 在进行性听力损失中的作用
- 批准号:
9089605 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别: