Pathogenic Variant Discovery Across a Broad Spectrum of Human Diseases
跨多种人类疾病的致病变异发现
基本信息
- 批准号:9376872
- 负责人:
- 金额:$ 55.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-04 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdvanced DevelopmentAffectAmericanBenignBioinformaticsBiological AssayChargeClinicalClinical DataClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesDNADataData SetDatabasesDetectionDiagnosisDiseaseEthnic OriginFamily StudyGene FrequencyGeneral PopulationGenetic TranscriptionGenomeGenomicsGoalsGuidelinesHealthHumanImageryIn VitroIndividualKnowledgeLaboratoriesMedical GeneticsMethodologyMolecular MedicineMutagenesisMutationNamesNational Heart, Lung, and Blood InstituteNational Human Genome Research InstituteNatureOntologyPathogenicityPatientsPenetrancePhenotypePhosphorylationPhosphotransferasesProbabilityProcessProteinsRNASequence AnalysisStructureSystemTestingTrans-Omics for Precision MedicineVariantWeightbaseclinical sequencingclinically relevantcohortcostdata sharingdensityexperimental studyfallsgenetic variantgenomic datahuman diseaseimprovedmedical schoolsnovelprotein functionprotein structurerare variantsoftware systemstooltranscription factortranscriptome sequencingtreatment strategyvariant of unknown significance
项目摘要
Project Summary
Falling costs of generating genomic data and computational advances in discerning health-affecting variants
therein are bringing personalized molecular medicine closer to reality. Progress has also been made on
establishing guidelines (e.g., by the American College of Medical Genetics and Genomics) for the
interpretation of sequence variants. However, the crucial step of systematically and accurately interpreting their
clinical implications remains an unsolved problem. Specifically, clinical interpretation is technically challenging
for several reasons, including: 1) the enormous number of variants in individual genomes, making it difficult to
pinpoint causal variants, 2) limited functional/clinical data at the gene and variant levels, 3) discovery of novel
clinical variants is a tedious low-throughput process using traditional laboratory and clinical approaches, and 4)
conventional bioinformatics tools tend to have insufficient precision based on limitations imposed by linear
sequence analysis alone. As a result, clinical genomics is still far too costly for routine clinical use. To meet the
urgent need of high precision clinical variant interpretation, our proposal aims to 1) build upon existing clinical
knowledge (ClinVar) from ClinGen efforts, 2) utilize rich human variation data in public databases (e.g., ExAC
and dbSNP), and 3) leverage existing and upcoming sequencing data from large disease cohorts and small
family studies; all to support developing/employing a cross-cutting computational/experimental strategy for
clinical variant discovery at a massive scale across a broad spectrum of human diseases. We hypothesize
that variants clustering in 3D spatial proximity to known pathogenic variants have high probabilities of affecting
protein function. We hypothesize further that many pathogenic variants in databases such as ExAC remain
undetected/hidden due to their recessive nature or their rarity that limits statistical power for detection in
association analyses. To test these hypotheses and to establish a database for functionally important variants
associated with human diseases, we propose to develop a software system called ClinPath3D to detect and
characterize clinically relevant pathogenic variants. Essentially, it will utilize protein structures and variant
pathogenicity potential to identify 3D spatial pathogenic variant clusters (PVCs) (Aim 1). We will then apply
ClinPath3D to interpret rare variants of unknown significance (VUS) from the ExAC, dbSNP, and other variant
databases using pathogenic variants obtained from ClinVar as nucleation points for clustering, all with a view
toward discerning disease variants in the general population (Aim 2). Finally, we will use large sequencing data
sets (CCDG, TopMed, UK100K) to statistically assess variant enrichment in specific disease cohorts and will
further improve positive results by experimentally characterizing 50-100 high-priority variants in kinases and
50-100 in transcription factors (Aim 3). Results from these studies will contribute to clinical advancement in two
key ways: (1) methodological improvement of identifying pathogenic/functional variants in patient genomes and
(2) the building of a comprehensive database of clinically relevant variants across a broad spectrum of disease
types.
项目摘要
产生基因组数据和计算进步的成本下降,以辨别影响健康的变体
其中正在使个性化的分子医学更接近现实。进度也已取得
为美国医学遗传与基因组学院建立准则(例如,
序列变体的解释。但是,系统,准确地解释他们的关键步骤
临床意义仍然是一个未解决的问题。具体而言,临床解释在技术上具有挑战性
由于几个原因,包括:1)单个基因组中的大量变体数量,因此很难
精确因果变体,2)在基因和变体水平上有限的功能/临床数据,3)发现新颖
临床变体是使用传统实验室和临床方法的繁琐的低通量过程,4)
基于线性施加的限制,传统的生物信息学工具往往具有不足的精度
仅序列分析。结果,对于常规临床使用而言,临床基因组学仍然太昂贵了。见面
迫切需要高精度的临床变体解释,我们的建议旨在1)建立在现有的临床基础上
Clingen努力的知识(Clinvar),2)在公共数据库中利用丰富的人类变异数据(例如,EXAC
和DBSNP),以及3)利用大型疾病队列和小的现有和即将到来的测序数据
家庭研究;所有这些都支持开发/采用交叉切割计算/实验策略
临床变异发现在广泛的人类疾病中大规模发现。我们假设
这种变体在3D空间邻近与已知致病变异的近端有很高的概率影响
蛋白质功能。我们进一步假设,数据库中的许多致病变异仍然存在
由于其隐性性或稀有性,未被发现/隐藏,限制了检测的统计能力
协会分析。测试这些假设并为功能上重要的变体建立数据库
与人类疾病相关,我们建议开发一个称为Clinpath3D的软件系统以检测和
表征临床上相关的致病变异。本质上,它将利用蛋白质结构和变体
鉴定3D空间致病变体簇(PVC)的致病潜力(AIM 1)。然后我们将申请
Clinpath3d解释来自EXAC,DBSNP和其他变体的稀有意义(VU)的稀有变体
使用从Clinvar获得的病原变体作为聚类的成核点的数据库,所有这些都有视图
朝着一般人群中的辨别疾病变异(AIM 2)。最后,我们将使用大型测序数据
集合(CCDG,Topmed,UK100K)在统计上评估特定疾病同龄人的变异富集,并将
通过实验表征激酶和
转录因子的50-100(目标3)。这些研究的结果将有助于两者的临床进步
关键方法:(1)方法论改善患者基因组中的致病性/功能变异
(2)在广泛的疾病中建立临床相关变体的综合数据库
类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FENG CHEN其他文献
FENG CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FENG CHEN', 18)}}的其他基金
Impact of cancer predisposition on oncogenic process, microenvironment, and treatment
癌症易感性对致癌过程、微环境和治疗的影响
- 批准号:
10544995 - 财政年份:2022
- 资助金额:
$ 55.48万 - 项目类别:
Impact of cancer predisposition on oncogenic process, microenvironment, and treatment
癌症易感性对致癌过程、微环境和治疗的影响
- 批准号:
10367242 - 财政年份:2022
- 资助金额:
$ 55.48万 - 项目类别:
Creating high-resolution multi-omics molecular atlases for developing urogenital organs
创建用于发育泌尿生殖器官的高分辨率多组学分子图谱
- 批准号:
10356306 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Washington University Senescence Tissue Mapping Center (WU-SN-TMC)
华盛顿大学衰老组织图谱中心 (WU-SN-TMC)
- 批准号:
10376523 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Creating high-resolution multi-omics molecular atlases for developing urogenital organs
创建用于发育泌尿生殖器官的高分辨率多组学分子图谱
- 批准号:
10491224 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Washington University Senescence Tissue Mapping Center (WU-SN-TMC)
华盛顿大学衰老组织图谱中心 (WU-SN-TMC)
- 批准号:
10685417 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Creating high-resolution multi-omics molecular atlases for developing urogenital organs
创建用于发育泌尿生殖器官的高分辨率多组学分子图谱
- 批准号:
10673765 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
相似国自然基金
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:32100463
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
发展高级固体核磁方法探索功能材料的表界面化学
- 批准号:21922410
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
TACSTD2在卵巢高级别浆液性癌发生发展中的作用及分子机制研究
- 批准号:81402157
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing causal inference methods to evaluate and leverage spillover effects through social Interactions for designing improved HIV prevention interventions
开发因果推理方法,通过社会互动评估和利用溢出效应,设计改进的艾滋病毒预防干预措施
- 批准号:
10762679 - 财政年份:2023
- 资助金额:
$ 55.48万 - 项目类别:
Developing and Automating an Extracellular Vesicle-Based Test for Early Detection of Hepatocellular Carcinoma
开发和自动化基于细胞外囊泡的测试以早期检测肝细胞癌
- 批准号:
10823687 - 财政年份:2023
- 资助金额:
$ 55.48万 - 项目类别:
Functional genomics investigation of pleiotropic vascular disease loci
多效性血管疾病位点的功能基因组学研究
- 批准号:
10501722 - 财政年份:2022
- 资助金额:
$ 55.48万 - 项目类别:
New Ultrastructural 3D Optical Imaging of Tumor Endothelium for Cancer Nanomedicine Development
用于癌症纳米药物开发的肿瘤内皮细胞新超微结构 3D 光学成像
- 批准号:
10334986 - 财政年份:2022
- 资助金额:
$ 55.48万 - 项目类别:
New Ultrastructural 3D Optical Imaging of Tumor Endothelium for Cancer Nanomedicine Development
用于癌症纳米药物开发的肿瘤内皮细胞新超微结构 3D 光学成像
- 批准号:
10573288 - 财政年份:2022
- 资助金额:
$ 55.48万 - 项目类别: