Accelerating vision restoration with in-vivo cellular imaging of retinal function
通过视网膜功能的体内细胞成像加速视力恢复
基本信息
- 批准号:9292320
- 负责人:
- 金额:$ 72.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsAntioxidantsAutomobile DrivingBiological PreservationBiomedical ResearchBlindnessCell physiologyCellsCellular StructuresCollaborationsConeDevelopmentEyeFeedbackFunctional ImagingGenetic TranscriptionGoalsHalorhodopsinsHumanImageImaging DeviceImaging TechniquesImaging technologyImplantIndividualInstitutesInstitutionLaboratoriesLightLight CellLocationMacacaMeasuresMetabolismMethodsModelingMonitorMonkeysMusNADPNeuronsNeurophysiology - biologic functionOutputPeroxidesPhotophobiaPhotoreceptorsPhototoxicityPrimatesProductionReporterResearch PersonnelResolutionRetinaRetinalRetinal DegenerationRetinal Ganglion CellsRetinitis PigmentosaRhodopsinSocietiesStem cellsStructureTechnologyTimeTranslatingTransplantationUniversitiesUp-RegulationValidationViral VectorVirusVisionVisual PathwaysWisconsinadaptive opticsadaptive optics scanning laser ophthalmoscopyblindcalcium indicatorcellular imagingcollaborative environmentdesignganglion cellgene therapyimaging modalityimplantationimprovedin vivoin vivo two-photon imaginginduced pluripotent stem cellmedical schoolsmouse modelnew technologynovelnovel therapeutic interventionoptical imagingoptogeneticspublic health relevancerelating to nervous systemresponserestorationstem cell therapysubretinal injectionsuccesstechnology developmenttherapy developmenttooltwo-photonvision development
项目摘要
DESCRIPTION (provided by applicant): The lack of methods to image functioning retinal circuitry in the living eye is a fundamental impediment to all efforts at vision restoration. The ability to assess the structure and function of retinal circuitry in vivo at multiple retinal layer simultaneously will not only transform our understanding of where different vision restoration strategies succeed and fail, the feedback these tools will provide will greatly shorten the development cycle for all approaches in which they are deployed. Investigators in the Advanced Retinal Imaging Alliance (ARIA) at the University of Rochester (Jennifer Hunter, Bill Merigan, and David Williams) will create a new retinal imaging tool designed to track changes in structure and function in both the inner and outer retina at cellular resolution in individual animals over time. This tool will combine two-photon, adaptive optics imaging of genetically-encoded calcium indicators to track the neuronal responses of individual photoreceptors and ganglion cells in two different animal models, mouse and monkey. We will assess the value of this imaging technology in three different approaches to vision restoration. Applying these tools to a gene therapy approach, the Rochester team will collaborate with Connie Cepko's laboratory at Harvard University to rescue cone function in retinitis pigmentosa through the up-regulation of anti-oxidants. We will demonstrate the value of these imaging tools for an optogenetics approach by expressing channel-rhodopsin in monkey cones in collaboration with Botond Roska at the Miescher Institute for Biomedical Research. This effort will also develop a primate model of retinal degeneration in which a viral vector is used to shave off photoreceptor outer segments. Finally, these imaging tools will be deployed to monitor the differentiation and neural connectivity of stem cells in mouse and then monkey in collaboration with David Gamm at the University of Wisconsin, Madison. This consortium will not only develop advanced imaging technology, it will translate it to the field of vision restoration, and create a collaborative environment for sharing best practices and combining different approaches.
描述(由适用提供):缺乏在活眼中图像功能性视网膜电路的方法是对视力恢复的所有努力的根本障碍。在多个视网膜层中评估体内视网膜电路的结构和功能的能力不仅会改变我们对不同视力恢复策略成功和失败的理解,而且这些工具将提供的反馈将大大缩短其部署的所有方法的开发周期。罗切斯特大学高级视网膜成像联盟(ARIA)的研究人员(Jennifer Hunter,Bill Merigan和David Williams)将创建一个新的视网膜成像工具,旨在跟踪单个动物随时间的细胞分辨率在蜂窝分辨率的内部和外部视网膜中的结构和功能变化。该工具将结合遗传编码的钙指示剂的两光自适应光学成像,以跟踪两个不同动物模型(小鼠和猴子)中单个光感受器和神经节细胞的神经元反应。我们将以三种不同的视觉恢复方法评估这种成像技术的价值。罗切斯特团队将这些工具应用于基因治疗方法,将与哈佛大学的康妮·塞普科(Connie Cepko)的实验室合作,通过上调抗氧化剂来挽救色素性视网膜炎的锥体功能。我们将通过与Miescher生物医学研究所的Botond Roska合作表达猴子锥中的通道 - ropopsin通过在猴子锥中表达频道 - 偶像蛋白来证明这些成像工具的价值。这项工作还将开发出视网膜变性的私人模型,其中使用病毒载体分享光感受器的外部段。最后,将部署这些成像工具,以监视鼠标中干细胞的分化和神经元连接性,然后与麦迪逊大学威斯康星大学的David Gamm合作进行猴子的合作。该财团不仅将开发高级成像技术,还将将其转化为视觉恢复领域,并创建一个协作环境,以共享最佳实践和结合不同的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID R WILLIAMS其他文献
DAVID R WILLIAMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID R WILLIAMS', 18)}}的其他基金
High Resolution Mapping of Foveal Ganglion Cell Receptive Fields in the Living Primate Eye
活体灵长类动物眼睛中心凹神经节细胞感受野的高分辨率绘图
- 批准号:
10319191 - 财政年份:2021
- 资助金额:
$ 72.37万 - 项目类别:
High Resolution Mapping of Foveal Ganglion Cell Receptive Fields in the Living Primate Eye
活体灵长类动物眼睛中心凹神经节细胞感受野的高分辨率绘图
- 批准号:
10534734 - 财政年份:2021
- 资助金额:
$ 72.37万 - 项目类别:
Accelerating vision restoration with in-vivo cellular imaging of retinal function
通过视网膜功能的体内细胞成像加速视力恢复
- 批准号:
9059096 - 财政年份:2015
- 资助金额:
$ 72.37万 - 项目类别:
Accelerating vision restoration with in-vivo cellular imaging of retinal function
通过视网膜功能的体内细胞成像加速视力恢复
- 批准号:
8912743 - 财政年份:2015
- 资助金额:
$ 72.37万 - 项目类别:
Optics Instrumentation for Advanced Ophthalmic Imaging
用于高级眼科成像的光学仪器
- 批准号:
7194997 - 财政年份:2003
- 资助金额:
$ 72.37万 - 项目类别:
Adaptive Optics Instrumentation for Advanced Ophthalmic Imaging
用于高级眼科成像的自适应光学仪器
- 批准号:
7931934 - 财政年份:2003
- 资助金额:
$ 72.37万 - 项目类别:
Optics Instrumentation for Advanced Ophthalmic Imaging
用于高级眼科成像的光学仪器
- 批准号:
7037410 - 财政年份:2003
- 资助金额:
$ 72.37万 - 项目类别:
Adaptive Optics Instrumentation for Advanced Ophthalmic Imaging
用于高级眼科成像的自适应光学仪器
- 批准号:
7527380 - 财政年份:2003
- 资助金额:
$ 72.37万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing trimester-specific placenta organ-on-chips to model healthy and oxidative stress and inflammation-associated pathologies
开发妊娠期特异性胎盘器官芯片来模拟健康和氧化应激以及炎症相关的病理学
- 批准号:
10732666 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Synergistically Target Mitochondria for Heart Failure Treatment
协同靶向线粒体治疗心力衰竭
- 批准号:
10584938 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别: