Novel Regulatory Factors of the Spindle Assembly Checkpoint
主轴装配检查点的新颖调节因素
基本信息
- 批准号:9210112
- 负责人:
- 金额:$ 34.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAnaphaseAneuploidyAntimitotic AgentsAntineoplastic AgentsApoptoticAreaBiochemicalBiologicalBypassCancer PatientCell CycleCell DeathCell SurvivalCell divisionCellsChromosomal InstabilityChromosomesComplementComplexCyclin-Dependent KinasesDevelopmentDrug resistanceEffectivenessEnsureEnzymesEventFutureGene ExpressionGeneticGenetic MaterialsGenome StabilityHumanKinetochoresLeadLightLinkMalignant NeoplasmsMapsMetaphaseMicroscopyMicrotubulesMitosisMitotic spindleModificationMolecularMothersOutcomePaclitaxelPathway interactionsPharmaceutical PreparationsPharmacologyPhosphoric Monoester HydrolasesPhosphorylationPlayPoisonPost-Translational Protein ProcessingPrometaphaseProtein DephosphorylationProteinsProteomicsQuality of lifeRecruitment ActivityResearchResistanceRoleSet proteinSister ChromatidSmall Interfering RNASpecificityTertiary Protein StructureTestingTimeanticancer researchbasecancer therapydaughter cellimprovedinterdisciplinary approachneoplastic cellnovelprotein functionprotein protein interactionpublic health relevancerepairedresearch studyresponsetransmission processtumortumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Human cell division is a highly coordinated set of events that ensures the proper transmission of genetic material (chromosomes) from one mother cell to two newly formed cells. Chromosome missegregation during cell division can lead to aneuploidy (an aberrant chromosomal number), which is a hallmark of most cancers and has been proposed to promote tumorigenesis. Critical to ensuring proper sister chromatid separation at the metaphase to anaphase transition is the multi-component spindle assembly checkpoint (SAC), which is activated when unattached kinetochores or nonproductive (monotelic, syntelic, and merotelic) attachments are sensed and functions to arrest cells in metaphase to give time to correct these deficiencies and generate proper microtubule-kinetochore attachments before proceeding with cell division. Interestingly, a functional SAC plays a role in the effectiveness of
chemotherapeutic drugs like antimitotics (drugs that inhibit mitosis), which damage the mitotic spindle, activate the SAC, arrest cells in prometaphase and trigger apoptotic cell death. Because understanding the SAC is critical to understanding tumorigenesis and the response of tumor cells to antimitotic drugs, it has become an attractive area of research. Although the last 40 years of research has shed light on the SAC, we are far from elucidating the full complement of regulatory factors involved in this complex pathway and from understanding how misregulation of this pathway can lead to tumorigenesis and resistance to chemotherapeutic drugs like antimitotics. To address these issues, we recently performed a high-throughput small interfering RNA (siRNA) screen for novel regulators of the SAC. This approach yielded two novel cyclin dependent kinases (Cdk14 and Cdk15) and two dual specificity phosphatases (DUSP7 and DUSP12). Inactivation of these novel factors leads to SAC bypass in the presence of antimitotic drugs like Taxol, which normally activate the SAC and induce cell death. To our knowledge, these factors have not been previously linked to SAC functioning and have limited genetic and molecular characterization in general. Thus understanding how these factors regulate the SAC is important to understanding the SAC and more broadly cell division. We hypothesize that these factors are controlling the SAC through their phosphorylation and dephosphorylation activities. Thus, we will test this hypothesis by analyzing the function of these
proteins during unperturbed cell divisions and in the presence of antimitotics that generate spindle damage and activate the spindle assembly checkpoint. We expect that our studies will identify and characterize new factors and pathways that regulate the SAC, that we will be able to map their roles in time and space, and that our contributions to understanding the mechanisms of cell division will impact future cancer studies and cancer patient quality of life and survival.
描述(由申请人提供):人类细胞分裂是一组高度协调的事件,确保遗传物质(染色体)从一个母细胞正确传递到两个新形成的细胞,细胞分裂过程中染色体错误分离可能导致非整倍性(异常)。染色体数目),这是大多数癌症的标志,并被认为对促进肿瘤发生至关重要,以确保中期到后期转变时正确的姐妹染色单体分离。多组分纺锤体装配检查点 (SAC),当检测到未附着的着丝粒或非生产性(单粒、合粒和粒粒)附着时,该点被激活,并起到将细胞阻滞在中期的作用,以便有时间纠正这些缺陷并生成适当的微管-着丝粒在有意进行细胞分裂之前,功能性 SAC 在细胞分裂的有效性中发挥着重要作用。
抗有丝分裂药物(抑制有丝分裂的药物)等化疗药物会损害有丝分裂纺锤体,激活 SAC,使细胞停滞在中期并引发细胞凋亡,因为了解 SAC 对于了解肿瘤发生和肿瘤细胞对抗有丝分裂药物的反应至关重要,它已成为一个有吸引力的研究领域,尽管过去 40 年的研究已经揭示了 SAC,但我们还远远没有阐明所涉及的监管因素的全部内容。为了解决这些问题,我们最近对 SAC 的新型调节剂进行了高通量小干扰 RNA (siRNA) 筛选。这种方法产生了两种新型细胞周期蛋白依赖性激酶(Cdk14 和 Cdk15)和两种双特异性磷酸酶(DUSP7 和 DUSP12)。这些新因子在存在抗有丝分裂药物(如紫杉醇)的情况下会导致 SAC 旁路,紫杉醇通常会激活 SAC 并诱导细胞死亡,据我们所知,这些因子以前并未与 SAC 功能相关,并且一般具有有限的遗传和分子特征。因此,了解这些因子如何调节 SAC 对于理解 SAC 和更广泛的细胞分裂非常重要,我们发现这些因子通过其磷酸化和去磷酸化活性来控制 SAC,因此,我们将通过分析这些因子的功能来检验这一假设。
在不受干扰的细胞分裂过程中以及在抗有丝分裂剂存在的情况下,蛋白质会产生纺锤体损伤并激活纺锤体组装检查点,我们希望我们的研究能够识别和表征调节 SAC 的新因子和途径,从而我们能够绘制它们在其中的作用。时间和空间,我们对理解细胞分裂机制的贡献将影响未来的癌症研究和癌症患者的生活质量和生存。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorge Torres其他文献
Jorge Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jorge Torres', 18)}}的其他基金
Research Training in Cell and Molecular Biology
细胞和分子生物学研究培训
- 批准号:
10619636 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
Research Training in Cell and Molecular Biology
细胞和分子生物学研究培训
- 批准号:
10409128 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
相似国自然基金
砂岩油藏高含水后期水激孔隙膨胀波提高采收率机理研究
- 批准号:52374059
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于碳氢键官能团化策略的复杂多肽后期修饰与多肽药物研发
- 批准号:22301167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
儿童早期气质对后期社会性发展的影响:人际掌控感的作用机制
- 批准号:32371108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
细胞壁酸性转化酶cwINVs参与花粉发育后期糖代谢途径的机制研究
- 批准号:32300231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
南海西北部陆缘裂后期岩浆侵入体的时空发育特征、地层响应及其构造意义研究
- 批准号:42376070
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Bridge-seq, a new tool to analyze human genome segregation defects
Bridge-seq,分析人类基因组分离缺陷的新工具
- 批准号:
10303448 - 财政年份:2021
- 资助金额:
$ 34.65万 - 项目类别:
Functional analysis of mammalian midbody RNA in post-mitotic signaling functions
哺乳动物中间体 RNA 在有丝分裂后信号传导功能中的功能分析
- 批准号:
10297652 - 财政年份:2021
- 资助金额:
$ 34.65万 - 项目类别:
Functional analysis of mammalian midbody RNA in post-mitotic signaling functions
哺乳动物中间体 RNA 在有丝分裂后信号传导功能中的功能分析
- 批准号:
10684068 - 财政年份:2021
- 资助金额:
$ 34.65万 - 项目类别:
Bridge-seq, a new tool to analyze human genome segregation defects
Bridge-seq,分析人类基因组分离缺陷的新工具
- 批准号:
10456922 - 财政年份:2021
- 资助金额:
$ 34.65万 - 项目类别: