Maintaining the integrity of a genome
维持基因组的完整性
基本信息
- 批准号:10672392
- 负责人:
- 金额:$ 36.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAmazeAnaphaseAneuploidyBindingBiologyCalibrationCancer EtiologyCatenated DNACell Culture TechniquesCellsCentromereChIP-seqChromosomal InstabilityChromosome 4Chromosome SegregationChromosome StructuresChromosomesComplementComplexCultured CellsDNADataDouble Strand Break RepairElementsEnsureEnvironmentEventFatigueGeneticGenetic DeterminismGenomeGenome StabilityGenomic InstabilityGoalsHandHaplotypesHealthHumanHuman Cell LineHuman ChromosomesHuman GenomeHuman PathologyImageImaging DeviceIndividualKinetochoresLiteratureMalignant NeoplasmsMapsMediatingMetaphaseMicrotubulesMissionMitosisModelingMolecularMutationOrganizational ModelsOutcomePathologicPatternPersonsProteinsPublic HealthRepetitive SequenceReportingResearchRoleShapesSister ChromatidTestingTimeTopoisomerase IITumor TissueVariantWorkYin-Yangblindcancer typechromosome losschromosome missegregationcohesincohesiongenetic informationgenome integritygenomic toolsgrasphuman tissueinnovationloss of functionmicronucleusmolecular modelingpreventreproductive senescencesegregationsuperresolution imagingtissue/cell culturetooltransmission processtumor xenograft
项目摘要
Project Summary/Abstract
In order to fully grasp the molecular origins of genome instability, the field must understand at a molecular level
how centromeres work to promote the stable transmission of chromosomes. Genome instability underlies a
variety of human pathologies, including cancer and reproductive aging. Our long-term goal is to determine how
the evolutionarily conserved cohesin complex maintains genome integrity through its roles in chromosome
segregation, chromosome organization, and double-strand break repair. Loss of sister chromatid cohesion is
speculated to be a major contributor to chromosome instability. The objective of this application is to produce a
molecular model for how cohesin operates at individual human centromeres to achieve centromeric cohesion
and accurate chromosome segregation. The central hypothesis is that cohesin and DNA catenation together
create centromere-unique landscapes of sister chromatid cohesion to prevent chromosome instability. The
variation in human centromeres and centromeric cohesion may therefore impact the transmission of each
chromosome. We will test the idea that centromere-specific cohesion must be considered as a genetic
determinant of sister chromatid cohesion and segregation in order to have a complete model for how
chromosomal instability occurs through two specific aims: 1) discover the landscape of centromeric cohesion at
individual human centromeres and 2) examine how chromosome centromeric cohesion maintains euploidy.
Under the first aim, calibrated paired-end ChIP seq will be used to map cohesin binding relative to kinetochore
proteins and human centromeric arrays in human tissue culture cells. This approach will be complemented by
superresolution imaging of the same three components (centromeres, kinetochores, and cohesin) in cells, and
will include imaging-based determination of centromere-specific cohesion. Together these approaches will
produce a linear and 3D map of cohesion within and around individual human centromeres. In the second aim
we will examine how centromere-specific patterns of centromeric cohesion prevent chromosome
missegregation events in cultured cells and in xenograft tumor tissue. The outcome will be fundamental
principles of centromeric array-based cohesion fatigue and resulting patterns of chromosome instability. The
research is innovative because it incorporates the latest information on human centromeric DNA arrays, a new
working model for the organization of centromeric DNA by cohesion, and new quantitative molecular, genomic,
and imaging tools to probe how centromeric cohesion enforces accurate sister chromatid segregation. The
proposed research is significant because centromeric arrays may be unrecognized genetic determinants of
chromosome instability. Many types of cancer are associated with seemingly random patterns of instability that
may have molecular origins in unique centromeric cohesion profiles. Furthermore, many cancers are
associated with mutations that impact chromosome segregation machinery, such as cohesin. The outcome of
this project will be a more complete picture of the mechanisms underlying chromosomal instability.
项目摘要/摘要
为了完全掌握基因组不稳定性的分子起源,该场必须在分子水平上理解
中心粒如何促进染色体的稳定传播。基因组不稳定性是
各种人类病理,包括癌症和生殖衰老。我们的长期目标是确定如何
进化保守的粘着素复合物通过其在染色体中的作用保持基因组完整性
隔离,染色体组织和双链断裂修复。姐妹染色单体内聚力的损失是
推测是染色体不稳定性的主要因素。该应用的目的是生产
分子模型的粘着蛋白如何在单个人的centromeres上运行以实现丝粒内聚会
和准确的染色体分离。中心假设是粘蛋白和DNA融合在一起
创建姐妹染色单体内聚力的Centromere唯一景观,以防止染色体不稳定性。这
因此,人类的丝粒和丝粒凝聚力的变化可能会影响每个的传播
染色体。我们将测试以下思想,即必须将Centromere特异性内聚力视为遗传
姐妹染色单体内聚和隔离的决定因素,以便有一个完整的模型
染色体不稳定性通过两个特定目的发生:1)在
单个人体centromeres和2)检查染色体centromeric凝聚力如何保持植物。
在第一个目标下,校准的配对芯片SEQ将用于映射粘蛋白的结合相对于动力学
人类组织培养细胞中的蛋白质和人类丝粒阵列。这种方法将得到补充
相同三个成分(centromeres,sbinetochores和obhesin)的上分辨率成像,并且
将包括基于成像的共粒特异性内聚力的确定。这些方法将在一起
在单个人类的centromeres内和周围产生线性和3D图。在第二个目标
我们将研究丝粒特异性的丝粒凝聚力模式如何预防染色体
培养细胞和异种移植肿瘤组织中的错误分析事件。结果将是基本的
基于丝粒阵列的原理基于染色体不稳定性的凝聚力和产生的模式。这
研究之所以创新,是因为它包含了有关人类丝粒DNA阵列的最新信息,这是一个新的
通过内聚力和新的定量分子基因组,用于组织丝粒DNA的工作模型
和成像工具,以探测中心粒的内聚力如何实现准确的姐妹染色质被隔离。这
拟议的研究很重要,因为中心层阵列可能是未被认可的遗传决定因素
染色体不稳定性。许多类型的癌症与看似随机的不稳定模式有关,
可能具有分子起源于独特的丝粒内聚谱。此外,许多癌症是
与影响染色体分离机械的突变有关,例如粘着蛋白。结果
该项目将是染色体不稳定性基础机制的更完整图片。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER L GERTON其他文献
JENNIFER L GERTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER L GERTON', 18)}}的其他基金
Molecular Mechanisms of Chromosome Segregation in Yeast
酵母染色体分离的分子机制
- 批准号:
7526328 - 财政年份:2008
- 资助金额:
$ 36.99万 - 项目类别:
Molecular Mechanisms of Chromosome Segregation in Yeast
酵母染色体分离的分子机制
- 批准号:
8130735 - 财政年份:2008
- 资助金额:
$ 36.99万 - 项目类别:
Molecular Mechanisms of Chromosome Segregation in Yeast
酵母染色体分离的分子机制
- 批准号:
7902307 - 财政年份:2008
- 资助金额:
$ 36.99万 - 项目类别:
Molecular Mechanisms of Chromosome Segregation in Yeast
酵母染色体分离的分子机制
- 批准号:
8307829 - 财政年份:2008
- 资助金额:
$ 36.99万 - 项目类别:
Molecular Mechanisms of Chromosome Segregation in Yeast
酵母染色体分离的分子机制
- 批准号:
7660518 - 财政年份:2008
- 资助金额:
$ 36.99万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 36.99万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 36.99万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 36.99万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 36.99万 - 项目类别: