High-speed volumetric imaging of neural activity throughout the living brain
整个活体大脑神经活动的高速体积成像
基本信息
- 批准号:9404832
- 负责人:
- 金额:$ 89.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAdoptedAdoptionAlgorithmsAnimal ModelAnimalsAxonBiologyBrainBrain imagingCalciumCell NucleusComplexComputer softwareCorpus striatum structureDataData AnalysesData ScienceDendritesDendritic SpinesDimensionsEnsureEventFerretsFluorescenceFluorescence MicroscopyGoalsHeadHypothalamic structureImageImaging technologyIndividualLabelLaboratoriesLateralMeasuresMethodsMicroscopeMonitorMorphologic artifactsMotionMotorMusNeurobiologyNeuronsNeurosciences ResearchOpticsOutputPhotonsPopulationResistanceResolutionScanningSignal TransductionSpeedStructureSynapsesSystemTechniquesTechnologyThickThree-Dimensional ImagingTimeTissue imagingWorkZebrafishadaptive opticsbasebrain tissuebrain volumeexperiencefluorescence microscopeflyfunctional plasticityimaging modalityin vivolight scatteringmicroendoscopynervous system disorderneural circuitnovel strategiesoperationpreventrelating to nervous systemsensory inputspatiotemporaltemporal measurementtooltwo-photon
项目摘要
To understand how the brain computes, we need to understand how individual neurons in a circuit integrate
their numerous inputs into output signals, as well as how they work together to encode a sensory input or
execute a motor command in a behaving animal. Circuits and neurons are three-dimensional (3D) and can
extend over hundreds or thousands of microns. Therefore, understanding their operations requires
monitoring their activity at both synaptic and cellular resolution in 3D at image rates that capture all activity
events. Behaving animals present a host of challenges to this goal. Existing 3D imaging technologies suffer
from insufficient volume imaging speed, brain-motion-induced image artifacts, as well as complex
hardware and software implementation. These limitations have prevented their adoption by biology
laboratories and remain a technical barrier for neuroscience research. Successful completion of our proposal
will overcome these limitations and profoundly impact neuroscience research. We recently developed a
Bessel focus scanning technology (BEST) that is easily integrated into existing two-photon microscopes,
resistant to motion artifacts, and have already achieved 30-Hz, synapse-resolving volumetric imaging of
sparsely labelled neuronal populations in a wide variety of model organisms. In this proposal, combining
the expertise of microscopists, biologists, and data scientists, we propose to further optimize BEST to
enable high-speed, high-throughput, and high-resolution volumetric activity recording of both sparsely and
densely labelled circuits throughout the living brain. We aim to record whole-brain activity in the fly at >10
Hz and through-cortex volume imaging in the mouse at ~2Hz. By combining BEST with microendoscopy,
we aim to achieve synaptic-resolution volumetric microendoscopic imaging at 30 Hz and use it to study
structural and functional plasticity in deeply buried nuclei of the mouse brain. By correcting brain-induced
optical aberrations, adaptive optics will enable BEST to maintain synapse resolution throughout the entire
mouse cortex. Easily adoptable, BEST has already been integrated into multiple two-photon fluorescence
microscopes in laboratories worldwide. With a continuously expanding user base, the proposed
optimization project will immediately benefit a wide range of laboratories, allowing them to study
volumetric neural activity at unprecedented high spatiotemporal resolution throughout the living brain.
要了解大脑如何计算,我们需要了解电路中的单个神经元如何整合
它们对输出信号的大量输入,以及如何一起工作以编码感官输入或
在行为动物中执行电动机命令。电路和神经元是三维(3D),可以
延长数百或数千微米。因此,了解他们的行动需要
以图像速率监测其在3D的突触和细胞分辨率的活动,以捕获所有活动
事件。行为动物为这个目标带来了许多挑战。现有的3D成像技术受苦
从体积不足的成像速度,大脑运动引起的图像伪影以及复杂
硬件和软件实现。这些限制阻止了它们通过生物学的采用
实验室,仍然是神经科学研究的技术障碍。成功完成我们的建议
将克服这些局限性并深刻影响神经科学研究。我们最近开发了一个
Bessel Focus扫描技术(最佳)很容易集成到现有的两光子显微镜中,
对运动伪像的抵抗力,并且已经达到了30 Hz的突触分解体积成像
多种模型生物中的稀疏标记神经元种群。在此提案中,结合
微观家,生物学家和数据科学家的专业知识,我们建议进一步优化最佳
启用高速,高通量和高分辨率的体积活动记录
整个活体大脑的密集标记的电路。我们的目标是在> 10时记录全脑活动
在〜2Hz时,小鼠中的Hz和通过皮层体积成像。通过将最佳结合与微观镜检查结合在一起,
我们旨在实现30 Hz的突触分辨率体积微观镜面成像
小鼠大脑深埋的核中的结构和功能可塑性。通过纠正大脑诱导
光学畸变,自适应光学元件将使整个过程中能够保持突触分辨率
鼠标皮质。易于采用,最好已将其集成到多个两光子荧光中
全球实验室的显微镜。随着不断扩展的用户群的建议
优化项目将立即受益于广泛的实验室,使他们能够学习
在整个活体大脑中,空前的高时空分辨率下的体积神经活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NA Ji其他文献
NA Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NA Ji', 18)}}的其他基金
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 89.32万 - 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
- 批准号:
10543177 - 财政年份:2021
- 资助金额:
$ 89.32万 - 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
- 批准号:
10048013 - 财政年份:2021
- 资助金额:
$ 89.32万 - 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
- 批准号:
10324548 - 财政年份:2021
- 资助金额:
$ 89.32万 - 项目类别:
Cell-type specific characterization of neuronal activity throughout V1
V1 期间神经元活动的细胞类型特异性特征
- 批准号:
10438695 - 财政年份:2018
- 资助金额:
$ 89.32万 - 项目类别:
Cell-type specific characterization of neuronal activity throughout V1
V1 期间神经元活动的细胞类型特异性特征
- 批准号:
10231008 - 财政年份:2018
- 资助金额:
$ 89.32万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
- 批准号:
10684399 - 财政年份:2023
- 资助金额:
$ 89.32万 - 项目类别:
Making Healthy Habits Stick: Extended Contact Interventions to Promote Long Term Physical Activity in African American Cancer Survivors
养成健康习惯:延长接触干预措施以促进非裔美国癌症幸存者的长期身体活动
- 批准号:
10821052 - 财政年份:2023
- 资助金额:
$ 89.32万 - 项目类别:
Walking Exercise Sustainability Through Telehealth for Veterans with Lower-LimbAmputation
通过远程医疗为下肢截肢退伍军人提供步行锻炼的可持续性
- 批准号:
10534859 - 财政年份:2022
- 资助金额:
$ 89.32万 - 项目类别:
Actigraphy Enhanced Clinical Chronic Lower Back Pain Management
体动记录仪增强临床慢性腰痛管理
- 批准号:
10211966 - 财政年份:2021
- 资助金额:
$ 89.32万 - 项目类别: