Statistical Methods for Environmental Data Subject to Detection Limits

受检测限影响的环境数据的统计方法

基本信息

  • 批准号:
    9061638
  • 负责人:
  • 金额:
    $ 7.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): As researchers investigate the relationship between cancer and exposure to environmental chemicals such as trace elements, pesticides, and dioxins, they often find concentrations that are lower than limits deemed reliable enough to report as numerical values. The detection limit (DL) may be a fixed number in some studies, but it can also vary widely from sample to sample in other studies. For the latter, the DL may be correlated with the exposure level, as observed in a colon cancer study in Kentucky. The data subject to DLs present challenges for data analysis and interpretation. In this proposal we focus on two important statistical problems encountered in the analysis of data from environmental epidemiologic studies: (a) estimation of the chemical distribution in a specific group; and (b) comparison of distributions among groups. For these two problems, ad hoc, parametric, and nonparametric methods have been proposed. Ad hoc methods are ill-advised unless there are relatively few measurements below DLs; and parametric methods can lead to markedly biased results when the parametric model is misspecified. Nonparametric methods have received increasing attention in recent years because of their robustness. However, current nonparametric methods simply borrow the commonly used methods for right-censored survival data, and do not take into account the following two unique characteristics of environmental exposure data with DLs: (a) it is not meaningful to define the hazard function for an exposure measurement; and (b) DL values are observable for all subjects including those whose actual exposure levels are detected. In addition, current nonparametric methods do not allow for sampling weights, which are typically present in survey data such as the National Health and Nutrition Examination Survey (NHANES). Due to these issues, current nonparametric methods may lead to the following four problems for the analysis of environmental exposure data with DLs: (a) lack of meaningful interpretation; (b) inefficient results; (c) inability to deal with the situation that the exposure level and DL are correlated; and (d) inability to handle survey data with sampling weights. To address the aforementioned problems, we will develop unified and efficient nonparametric estimation and testing methods that can (a) deal with possible correlation between the exposure level and DL; (b) incorporate sampling weights. We will utilize state-of-the-art methods for censored survival data and tailor them to environmental exposure data with DLs. The proposed methods will be applied to data from a recently conducted colon cancer case-control study in Kentucky, an ongoing lung cancer case-control study in Kentucky, and the NHANES. 1
描述(由申请人提供):当研究人员调查癌症与环境化学物质(例如痕量元素,农药和二恶英)之间的关系时,他们经常发现浓度低于被认为可靠的限制,足以报告为数值。在某些研究中,检测极限(DL)可能是固定的数字,但是在其他研究中,它在样本中也可能有很大差异。对于后者,正如肯塔基州的一项结肠癌研究所观察到的那样,DL可能与暴露水平相关。 DLS的数据对数据分析和解释提出了挑战。在此提案中,我们关注的是在环境流行病学研究的数据分析中遇到的两个重要的统计问题:(a)特定组中化学分布的估计; (b)组之间分布的比较。对于这两个问题,已经提出了临时,参数和非参数方法。除非DLS以下相对较少的测量,否则对临时方法的建议是不明智的。当参数模型被误指定时,参数方法可能会导致明显偏差的结果。近年来,非参数方法因其稳健性而受到越来越多的关注。但是,当前的非参数方法只是借用用于右核心生存数据的常用方法,并且没有考虑到具有DLS的环境暴露数据的以下两个唯一特征:(a)定义为a危险函数定义危害功能是没有意义的。暴露测量; (b)所有受试者都可以观察到DL值,包括检测到实际暴露水平的受试者。此外,当前的非参数方法不允许进行抽样权重,这些权重通常存在于调查数据中,例如国家健康和营养检查调查(NHANES)。由于这些问题,目前的非参数方法可能会导致以下四个问题,用于分析具有DLS的环境暴露数据:(a)缺乏有意义的解释; (b)效率低下的结果; (c)无法处理 暴露水平和DL相关的情况; (d)无法处理采样权重的调查数据。为了解决上述问题,我们将开发统一,有效的非参数估计和测试方法,以(a)处理暴露水平与DL之间的可能相关性; (b)合并抽样权重。我们将利用最先进的方法来审查生存数据,并将其量身定制为使用DLS的环境暴露数据。提出的方法将应用于肯塔基州最近进行的结肠癌病例对照研究,肯塔基州正在进行的肺癌病例对照研究和NHANES的数据。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Chen其他文献

Li Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Chen', 18)}}的其他基金

Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
  • 批准号:
    10274879
  • 财政年份:
    2021
  • 资助金额:
    $ 7.53万
  • 项目类别:
Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
  • 批准号:
    10457987
  • 财政年份:
    2021
  • 资助金额:
    $ 7.53万
  • 项目类别:
Computational modeling of genetic variations by multi-omics integration todecipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
  • 批准号:
    10688701
  • 财政年份:
    2021
  • 资助金额:
    $ 7.53万
  • 项目类别:
Computational modeling of genetic variations by multi-omics integration todecipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
  • 批准号:
    10625423
  • 财政年份:
    2021
  • 资助金额:
    $ 7.53万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
  • 批准号:
    10861960
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
  • 批准号:
    10725811
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Informing alcohol policy: The impact of evidence-based alcohol warnings on consumption
告知酒精政策:基于证据的酒精警告对消费的影响
  • 批准号:
    10565120
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
  • 批准号:
    10762645
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
  • 批准号:
    10644889
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了