Computational modeling of genetic variations by multi-omics integration todecipher personal genome

通过多组学整合遗传变异的计算模型来破译个人基因组

基本信息

  • 批准号:
    10625423
  • 负责人:
  • 金额:
    $ 35.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Computational modeling of genetic variations by multi-omics integration to decipher personal genome A person’s genome typically contains millions of genetic variants. Understanding these variants by assessing their functional impact on a person’s phenotype, is currently of great interest in human genetics and precision medicine. Though Genome-Wide Association Studies (GWAS) or Quantitative Trait Locus (QTL) studies have successfully identified variants associated with traits or molecular phenotypes, most of them are in noncoding regions and hampered by linkage disequilibrium, making the identification and interpretation of casual variants difficult. Moreover, most of these discoveries are common variants, however, rare and individual-specific variants in personal genome are underexplored. Understanding these variants will not only explain the missing heritability from GWAS but also improve the precision medicine. Recently, the advent and popularity of whole genome sequencing (WGS) and paired multi-omics functional assays provide an unprecedented opportunity to identify rare and individual-specific casual variants. However, the sample sizes of most WGS studies are modest compared to GWAS, making the WGS analysis particularly challenging. Nevertheless, statistical and computational methods for analyzing WGS are underdeveloped. Given these challenges and my unique multi- disciplinary training, the overall goals of my research program are to develop a novel class of machine learning, statistical and system biology approaches for the identification, prioritization and interpretation of noncoding variants by integrating GWAS, WGS and multi-omics functional assays, which will empower precision medicine by identifying individualized biomarkers for disease prevention, diagnosis and treatment. Specifically, in the next five years, my lab will (i) develop a novel transfer learning approach to improve the prediction of noncoding casual variants using multi-dimensional omics features (ii) develop a multi-omics integrated omnibus scan test to improve the identification of rare casual variants from whole-genome sequencing data (iii) develop an integrative computational framework for scoring impact of noncoding variants in personal genome (iv) develop a novel class of multi-trait methods to improve phenotype prediction using whole-genome genetic variations. In the meantime, supported by Indiana University Precision Health Initiative, we will apply the methodologies to different studies from Indiana Alzheimer’s Disease Center and Indiana Multiple Myeloma Biobank for novel scientific findings. We will work close with collaborated geneticists and clinician-scientists to interpret the discoveries. Importantly, we will work with experimental labs to validate the findings. In line with our previous work, we will continue to make all developed methods into open-source software tools that are accessible and useful to the biomedical research community.
通过多词的整合对遗传变异的计算建模,以破译个人基因组 一个人的基因组通常包含数百万个遗传变异。通过评估来了解这些变体 它们对一个人的表型的功能影响,目前对人类遗传学和精度有极大的兴趣 药品。尽管全基因组关联研究(GWAS)或定量性状基因座(QTL)研究已有 成功鉴定出与性状或分子表型相关的变体,其中大多数是在非编码中 区域并受到连锁dissequilbirium的阻碍,使随意变体的识别和解释 难的。此外,这些发现中的大多数都是常见变体,但是,稀有和特定的变体 在个人基因组中,没有被忽略的。了解这些变体不仅可以解释缺失的遗传力 来自GWAS,但也可以改善精度医学。最近,整个基因组的冒险和流行 测序(WGS)和配对的多词功能测定提供了前所未有的机会来识别 稀有和特定的休闲变体。但是,大多数WGS研究的样本量很小 与GWAS相比,使WGS分析特别挑战。然而,统计和 用于分析WGS的计算方法欠发达。鉴于这些挑战和我独特的多 纪律培训,我的研究计划的总体目标是开发一种新颖的机器学习, 统计和系统生物学方法用于识别,优先级和解释非编码的方法 通过整合GWAS,WGS和多态功能测定法,这将赋予精度医学 通过确定用于预防疾病,诊断和治疗的个性化生物标志物。具体来说,在下一个 五年,我的实验室(i)开发了一种新颖的转移学习方法来改善非编码的预测 使用多维的OMICS功能(II)开发多摩管集成综合扫描测试的休闲变体 为了改善全基因组测序数据(III)的罕见休闲变体的识别 非编码变体在个人基因组(IV)中的评分影响的综合计算框架发展 使用全基因组遗传变异改善表型预测的新型多特征方法。 在 同时,在印第安纳大学精确健康计划的支持下,我们将把这些方法应用于 来自印第安纳州阿尔茨海默氏病中心和印第安纳州多发性骨髓瘤生物库的不同研究 科学发现。我们将与合作的遗传学家和临床科学家密切合作,以解释 发现。重要的是,我们将与实验实验室合作以验证发现。与我们以前的 工作,我们将继续将所有开发的方法用于可访问的开源软件工具,并且 对生物医学研究界有用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MPRAVarDB: an online database and web server for exploring regulatory effects of genetic variants.
MPRAVarDB:用于探索遗传变异的调控效应的在线数据库和网络服务器。
  • DOI:
    10.1101/2024.04.02.587790
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nizomov,Javlon;Jin,Weijia;Xia,Yi;Liu,Yunlong;Li,Zhigang;Chen,Li
  • 通讯作者:
    Chen,Li
Multi-task deep autoencoder to predict Alzheimer's disease progression using temporal DNA methylation data in peripheral blood.
DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
DeepPerVar:一个多模式深度学习框架,用于个人基因组中遗传变异的功能解释。
TIVAN-indel: a computational framework for annotating and predicting non-coding regulatory small insertions and deletions.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Chen其他文献

Li Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Chen', 18)}}的其他基金

Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
  • 批准号:
    10274879
  • 财政年份:
    2021
  • 资助金额:
    $ 35.73万
  • 项目类别:
Computational modeling of genetic variations by multi-omics integration to decipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
  • 批准号:
    10457987
  • 财政年份:
    2021
  • 资助金额:
    $ 35.73万
  • 项目类别:
Computational modeling of genetic variations by multi-omics integration todecipher personal genome
通过多组学整合遗传变异的计算模型来破译个人基因组
  • 批准号:
    10688701
  • 财政年份:
    2021
  • 资助金额:
    $ 35.73万
  • 项目类别:
Statistical Methods for Environmental Data Subject to Detection Limits
受检测限影响的环境数据的统计方法
  • 批准号:
    9061638
  • 财政年份:
    2015
  • 资助金额:
    $ 35.73万
  • 项目类别:

相似国自然基金

基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
  • 批准号:
    82330057
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
间质性肺疾病致肺气体交换功能改变的超极化129Xe MRI定量研究
  • 批准号:
    82372150
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
缺血性脑卒中疾病中NLRP6磷酸化修饰的鉴定及其在调控炎性小体活化中的作用和机制研究
  • 批准号:
    82302474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞清除后骨髓移植延缓csf1r点突变小鼠疾病进展的机制研究
  • 批准号:
    82301526
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的心血管疾病区域协同医疗服务研究
  • 批准号:
    72301123
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 35.73万
  • 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
  • 批准号:
    10557547
  • 财政年份:
    2023
  • 资助金额:
    $ 35.73万
  • 项目类别:
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
  • 批准号:
    10637323
  • 财政年份:
    2023
  • 资助金额:
    $ 35.73万
  • 项目类别:
Identifying the role of notch3 in brain pericyte function in health and Alzheimer's disease
确定 notch3 在健康和阿尔茨海默病中大脑周细胞功能中的作用
  • 批准号:
    10679198
  • 财政年份:
    2023
  • 资助金额:
    $ 35.73万
  • 项目类别:
Behavioral and physiological measurements of hearing in mouse models of Alzheimer's Disease
阿尔茨海默病小鼠模型听力的行为和生理测量
  • 批准号:
    10647340
  • 财政年份:
    2023
  • 资助金额:
    $ 35.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了