Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
基本信息
- 批准号:9118340
- 负责人:
- 金额:$ 35.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsAnatomyArchitectureArchivesAtlasesBase of the BrainBrain MappingCollaborationsCommunitiesComputer AnalysisComputer softwareDataDatabasesDependenceDevelopmentDiffusion Magnetic Resonance ImagingEnvironmentGrantHandHealthImageImage AnalysisLinkMagnetic Resonance ImagingMaintenanceManualsMemoryMethodsMulticenter StudiesOnline SystemsProcessQuality ControlReportingResearchResolutionResourcesServicesSupercomputingSystemTechnologyTestingTrainingUniversitiesUpdateVisitbaseimage processingimaging Segmentationimprovedneuroimagingplatform-independentprogramsresearch studysoftware developmentsymposiumtechnology diffusiontoolweb based interfaceweb interfacewhite matter
项目摘要
DESCRIPTION (provided by applicant): The purpose of this grant is to support continued development and maintenance of MriStudio software developed in Johns Hopkins University. MriStudio is comprehensive software for MR image processing and analysis with emphasis on white matter anatomy. MriStudio consists of three modules, DtiStudio, DiffeoMap, and RoiEditor. DtiStudio was introduced in 2001 and remains one of the most widely used programs to process diffusion tensor imaging (DTI) data. DiffeoMap and RoiEditor were introduced in 2007, which provides a very unique environment to perform a cutting-edge image transformation and atlas-based automated image segmentation. What is especially unique about DiffeoMap is, because our advanced brain mapping algorithms are highly CPU and memory intensive, it adopts Cloud-type architecture, through which users can have access to our supercomputation resource. Currently, there are more than 6,500 registered uses. In this application, we propose to extend this service to the community through the following aims; Aim 1: Continued user support through training and dissemination Currently, two major channels of training and dissemination are through web-based resources (manuals and videos) and hand-on monthly 2-day tutorials. As the functionalities of MriStudio expand, we will continuously update the online materials and tutorials. Aim 2: Extension of the functionality Aim 2-1: Advanced diffusion MRI analysis package: Through the collaboration with Dr. Tournier, spherical harmonic decomvolution algorithm will be implemented. Aim 2-2: Automated and probabilistic tractography: We will incorporate a probabilistic tractography method based on dynamic programing and automate the ROI definition process. Aim 2-3: Quality control reporting: We will deploy a comprehensive and quantitative quality control reporting system, which is extremely important for automated analysis of large-scale studies. Aim 3: Cross-platform extension by adopting web-based interface. We will develop web-based Cloud computation service, which will eliminate the platform-dependence. Aim 4: Completion of XNAT-based solution, we will develop a server-based automated analysis pipeline that is linked to a research image database system, called XNAT. Aim 5: Deployment of multi-atlas-based brain segmentation algorithm, we will deploy our multi-atlas technology in our server and make them available for testing to users through the Cloud computation system.
描述(由申请人提供):这笔赠款的目的是支持约翰·霍普金斯大学开发的MRISTUDIO软件的持续开发和维护。 Mristudio是用于MR图像处理和分析的综合软件,重点是白质解剖结构。 Mristudio由三个模块,Dtistudio,DiffeoMap和Roieditor组成。 Dtistudio于2001年推出,仍然是处理扩散张量成像(DTI)数据的最广泛使用的程序之一。 DiffeoMap和Roieditor于2007年引入,该环境提供了一个非常独特的环境,可以执行最先进的图像转换和基于ATLAS的自动图像分割。 DIFFEOMAP特别独特的是,因为我们先进的大脑映射算法是高度CPU和内存密集型的,因此它采用了云型体系结构,用户可以通过该体系结构访问我们的超级计算资源。当前,有6,500多种注册用途。在此应用程序中,我们建议通过以下目标将此服务扩展到社区; AIM 1:通过培训和传播目前的持续用户支持,两个主要的培训和传播渠道是通过基于Web的资源(手册和视频)和每月2天的手工完成的。随着MRISTUDIO的功能扩大,我们将不断更新在线材料和教程。 AIM 2:功能的扩展目标目标2-1:高级扩散MRI分析套件:通过与Tournier博士的合作,将实施球形谐波分流算法。 AIM 2-2:自动化和概率的拖拉术:我们将基于动态编程的概率拖拉方法合并,并自动化ROI定义过程。 AIM 2-3:质量控制报告:我们将部署全面和定量的质量控制报告系统,这对于大规模研究的自动分析非常重要。 AIM 3:通过采用基于Web的接口,跨平台扩展。 我们将开发基于Web的云计算服务,这将消除平台依赖性。 AIM 4:基于XNAT的解决方案的完成,我们将开发基于服务器的自动分析管道,该管道链接到一个名为XNAT的研究图像数据库系统。 AIM 5:部署基于多ATLA的大脑细分算法,我们将在服务器中部署多ATLAS技术,并通过云计算系统向用户进行测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL I MILLER其他文献
MICHAEL I MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL I MILLER', 18)}}的其他基金
Tracing Spread of Pathology Within The HD Brain via Automated Neuroimaging
通过自动神经影像追踪 HD 大脑内病理学的传播
- 批准号:
10155594 - 财政年份:2018
- 资助金额:
$ 35.44万 - 项目类别:
Tracing Spread of Pathology Within The HD Brain via Automated Neuroimaging
通过自动神经影像追踪 HD 大脑内病理学的传播
- 批准号:
9924675 - 财政年份:2018
- 资助金额:
$ 35.44万 - 项目类别:
Neurodegenerative and Neurodevelopmental Subcortical Shape Diffeomorphometry
神经退行性和神经发育皮层下形状微形态测量
- 批准号:
9769057 - 财政年份:2016
- 资助金额:
$ 35.44万 - 项目类别:
Neurodegenerative and Neurodevelopmental Subcortical Shape Diffeomorphometry
神经退行性和神经发育皮层下形状微形态测量
- 批准号:
9355187 - 财政年份:2016
- 资助金额:
$ 35.44万 - 项目类别:
Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
- 批准号:
9896853 - 财政年份:2013
- 资助金额:
$ 35.44万 - 项目类别:
Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
- 批准号:
8610697 - 财政年份:2013
- 资助金额:
$ 35.44万 - 项目类别:
Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
- 批准号:
10159312 - 财政年份:2013
- 资助金额:
$ 35.44万 - 项目类别:
BIGDATA Small Project Structurization and Direct Search of Medical Image Data
BIGDATA小项目结构化和医学图像数据直接搜索
- 批准号:
8599843 - 财政年份:2013
- 资助金额:
$ 35.44万 - 项目类别:
BIGDATA Small Project Structurization and Direct Search of Medical Image Data
BIGDATA小项目结构化和医学图像数据直接搜索
- 批准号:
8852613 - 财政年份:2013
- 资助金额:
$ 35.44万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别:
Advancing Methods for MR-guided Focused Ultrasound Hyperthermia for Head and Neck Cancer
推进 MR 引导聚焦超声热疗治疗头颈癌的方法
- 批准号:
10738459 - 财政年份:2023
- 资助金额:
$ 35.44万 - 项目类别: