Metabolomic Analyses for the Prognosis of Acute Coronary Syndrome
急性冠脉综合征预后的代谢组学分析
基本信息
- 批准号:8813116
- 负责人:
- 金额:$ 22.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Admission activityApplications GrantsAreaAtherosclerosisBiological MarkersCardiologyCardiovascular DiseasesCardiovascular systemCareer ChoiceCause of DeathCenters of Research ExcellenceCessation of lifeClassificationClinicalClinical ManagementClinical ResearchConsultCoronaryCoronary Care UnitsCoronary heart diseaseDataData CollectionDiagnosisDiscriminant AnalysisDiseaseEconomicsEnsureEventFaceFundingGoalsHospitalsHourHyperglycemiaHyperlipidemiaIndividualInterventionKnowledgeLaboratoriesLeast-Squares AnalysisLifeMass FragmentographyMeasurementMentorsMentorshipMetabolicMethodsModelingMolecular TargetPathway interactionsPatientsPatternPerformancePlasmaPredictive ValueProceduresProspective StudiesQuality ControlRecruitment ActivityRecurrenceResearchResearch DesignResearch PersonnelResearch Project GrantsResourcesRiskRisk FactorsSamplingStagingStratificationSurvival AnalysisSurvivorsTechnologyTestingTherapeuticTimeTrainingTranslational ResearchUnited States National Institutes of Healthacute coronary syndromeadverse outcomebasecareercareer developmentcostdesigndisabilityexperiencefollow-uphigh riskimprovedimproved outcomemetabolomicsmortalitymultidisciplinarynovelnovel markernovel therapeuticsoutcome forecastpatient stratificationprognosticprogramsprotocol developmentresearch and developmentsocialtooltranslational medicine
项目摘要
PROJECT SUMMARY (Research Project 3)
Acute coronary syndrome (ACS) is a life-threatening form of coronary heart disease, which is a major
cause of death and disability in the US. Recurrent events in patients with ACS are very common, and survivors
face a substantial excess risk of adverse outcomes, leading to a great economic and social burden. Accurate
risk prediction in ACS patients is critically important for helping clinicians make therapeutic decisions, such as
recommending a more aggressive intervention and intensive follow-up. However, risk stratification in ACS
patients remains challenging, and the identification of novel predictors is necessary for improving the
prognostic prediction in patients with ACS. Recent advances in high-throughput metabolomic technology make
it highly promising that novel metabolic biomarkers or patterns of these biomarkers for better risk stratification
in patients with ACS will be identified. Therefore, the overall objective of the proposed study is to identify
metabolic biomarkers for predicting the prognosis of ACS using a state-of-the-art metabolomic platform which
integrates LC-MS and GC-MS methods. We will recruit 478 ACS patients who will be hospitalized in 3 major
hospitals serving the Greater New Orleans area. Baseline data from the patients will be collected within 24
hours of admission. Blood plasma samples will be used for the metabolomic analysis. The study patients will
be followed for 1.5 years, on average. Follow-up data on major adverse cardiovascular events (MACE) in the
study patients will be collected every 6 months and ascertained by study cardiologists. Rigorous quality control
procedures will be applied to the laboratory measurements of metabolites and subsequent metabolomic data
handling. We will use the survival analysis method to examine the associations between metabolomic features
and MACE in ACS patients. In addition to individual metabolite analysis, we will use multivariate methods
(including principle component analysis and partial least squares discriminant analysis) to identify metabolomic
patterns which can discriminate between ACS patients with and without MACE during the follow-up period. We
will further examine whether the identified metabolites or metabolomic patterns will provide additional
predictive value compared to existing risk scores (such as GRACE and TIMI scores) for the prognostic
prediction in patients with ACS. The proposed research will be the first study to comprehensively investigate
metabolic biomarkers associated with recurrent events and death in patients with ACS. It has great potential to
identify novel metabolic biomarkers for better predicting outcomes and improving risk prediction in patients with
ACS. It may have a significant impact on translational medicine in improving clinical management of ACS. It
may also advance our understanding of the pathways involved in the progression of atherosclerosis, providing
novel therapeutic molecular targets for ACS. This COBRE research project and funding will help Dr. Zhao to
transition into a successful competitive independent NIH-funded investigator.
项目摘要(研究项目3)
急性冠状动脉综合征(ACS)是一种威胁生命的冠心病,这是一种主要
美国的死亡和残疾原因。 ACS患者的复发事件非常普遍,幸存者
面临不利结果的大量过剩风险,导致巨大的经济和社会负担。准确的
ACS患者的风险预测对于帮助临床医生做出治疗决定至关重要,例如
建议进行更积极的干预和深入的随访。但是,ACS的风险分层
患者仍然具有挑战性,新型预测因子的识别对于改善
ACS患者的预后预测。高通量代谢组技术的最新进展使得
非常有希望的是,新型的代谢生物标志物或这些生物标志物的模式以更好的风险分层
在ACS患者中,将被确定。因此,拟议研究的总体目标是确定
使用最先进的代谢组平台预测AC的预后的代谢生物标志物,该平台
集成LC-MS和GC-MS方法。我们将招募478名ACS患者,他们将在3个专业中住院
为大新奥尔良地区服务的医院。来自患者的基线数据将在24中收集
入学时间。血浆样品将用于代谢组学分析。研究患者将
平均遵循1。5年。有关主要不良心血管事件(MACE)的后续数据
研究患者将每6个月收集一次,并由研究心脏病学家确定。严格的质量控制
程序将应用于代谢物的实验室测量和随后的代谢组数据
处理。我们将使用生存分析方法来检查代谢组特征之间的关联
和ACS患者的狼牙棒。除了单个代谢物分析外,我们还将使用多元方法
(包括主要成分分析和部分最小二乘判别分析)以识别代谢组学
在随访期间,可以区分有和无MACE的ACS患者的模式。我们
将进一步检查确定的代谢物或代谢组模式是否会提供额外
与预后的现有风险评分(例如恩典和TIMI评分)相比,预测价值
ACS患者的预测。拟议的研究将是第一个全面研究的研究
ACS患者的复发事件和死亡相关的代谢生物标志物。它有很大的潜力
确定新型的代谢生物标志物,以更好地预测结果并改善患者的风险预测
ACS。这可能会对改善ACS临床管理的转化医学产生重大影响。它
也可能会促进我们对动脉粥样硬化进展涉及的途径的理解,提供
ACS的新型治疗分子靶标。这个毛病研究项目和资金将帮助赵博士
过渡到成功的独立NIH资助的研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Zhao其他文献
Qi Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Zhao', 18)}}的其他基金
Prenatal Longitudinal Metabolomics Profiling for Early Childhood Growth Trajectories and Obesity Risk in a US Biracial Birth Cohort
美国混血出生队列中儿童早期生长轨迹和肥胖风险的产前纵向代谢组学分析
- 批准号:
10580910 - 财政年份:2023
- 资助金额:
$ 22.56万 - 项目类别:
Metabolomic Analyses for the Prognosis of Acute Coronary Syndrome
急性冠脉综合征预后的代谢组学分析
- 批准号:
9241414 - 财政年份:
- 资助金额:
$ 22.56万 - 项目类别:
相似海外基金
Iowa-Diversifying Research And Mentorship (iDREAM)
爱荷华州多元化研究和指导(iDREAM)
- 批准号:
10611609 - 财政年份:2023
- 资助金额:
$ 22.56万 - 项目类别:
Raise Awareness In Students Early (RAISE) Host and Microbe Program
早期提高学生意识 (RAISE) 宿主和微生物计划
- 批准号:
10628899 - 财政年份:2023
- 资助金额:
$ 22.56万 - 项目类别:
Development of Patient-Tailored Adaptive Treatment Strategies for Acute Severe Ulcerative Colitis
制定针对急性重症溃疡性结肠炎的患者定制适应性治疗策略
- 批准号:
10569397 - 财政年份:2023
- 资助金额:
$ 22.56万 - 项目类别:
2021 Consensus Conference to Implement Optimal VTE Prophylaxis in Trauma
2021 年创伤中实施最佳 VTE 预防共识会议
- 批准号:
10237758 - 财政年份:2021
- 资助金额:
$ 22.56万 - 项目类别:
Identification of Postoperative Pulmonary Complication Risk by Phenotyping Adult Surgical Patients who Underwent General Anesthesia with Mechanical Ventilation
通过对接受机械通气全身麻醉的成人手术患者进行表型分析来识别术后肺部并发症风险
- 批准号:
10311613 - 财政年份:2021
- 资助金额:
$ 22.56万 - 项目类别: