Identification of Postoperative Pulmonary Complication Risk by Phenotyping Adult Surgical Patients who Underwent General Anesthesia with Mechanical Ventilation
通过对接受机械通气全身麻醉的成人手术患者进行表型分析来识别术后肺部并发症风险
基本信息
- 批准号:10311613
- 负责人:
- 金额:$ 3.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdmission activityAdoptedAdultAdult Respiratory Distress SyndromeAgeAlveolarAnatomyAnesthesia proceduresAnesthesiologyApplications GrantsArea Under CurveBig DataBiologicalBody mass indexCharacteristicsComplicationDataData ScienceDay SurgeryEffectivenessElectronic Health RecordFellowshipFoundationsFunctional disorderGeneral AnesthesiaGoalsHealth systemHospital CostsHospitalsIncidenceIndividualIntensive CareIntensive Care UnitsKnowledgeLeadLengthLength of StayLiteratureLocationLogistic RegressionsLungMachine LearningMechanical ventilationMorbidity - disease rateNational Institute of Nursing ResearchNursesObservational StudyOdds RatioOperative Surgical ProceduresOxygenPathologyPatient-Focused OutcomesPatientsPhenotypePhysiologicalPhysiologyPneumoniaPopulation HeterogeneityPositive-Pressure RespirationPostoperative PeriodPrecision HealthProblem SolvingProceduresResearchResearch DesignResearch MethodologyResourcesRespiratory Signs and SymptomsRespiratory SystemRetrospective StudiesRiskRisk FactorsScienceScientistSecondary toSeveritiesSmokingStatistical MethodsSubcategorySubgroupSurgical complicationTechniquesTidal VolumeTimeTrainingUniversitiesVentilatorVentilator-induced lung injuryadvanced analyticsbasecareerclinically significantcomorbidityimprovedmachine learning algorithmmortalitypersonalized carepersonalized strategiespost-doctoral trainingpredictive modelingpressurepreventprovider adherencerecruitreduce symptomssexskillsstudy populationsupplemental oxygensupport toolssurgery outcometherapy developmentventilation
项目摘要
ABSTRACT
Science: One in five patients who develop a postoperative pulmonary complication (PPC) dies within 30 days
of surgery. PPCs are the second most frequent surgical complications and lead to increased admission to
intensive care units, longer hospital length of stay, and high resource utilization. Ventilator induced lung injury
(VILI) secondary to intraoperative mechanical ventilation is a risk for PPCs. Lung protective ventilation, which
entails lower tidal volume, sufficient positive end expiratory pressure, optimal inspiratory time and an alveolar
recruitment maneuver, has been adopted for intraoperative use to protect pulmonary parenchyma against VILI
and ultimately reduce PPC incidence. However, we still do not know the optimal ventilator parameters to yield
the lowest incidence of PPCs, because what is best varies from patient to patient. Personalized ventilator
parameters are a potential solution to solve this problem. A retrospective study leveraging electronic health
records (EHRs) is proposed to identify PPC risks by phenotyping adult surgical patients who underwent
general anesthesia with mechanical ventilation. The specific aims of this project are to: (1) Examine the
incidence of PPCs in the overall study population and phenotype patients based on nonmodifiable patient,
surgical, and anesthesia characteristics; and examine the incidence of PPCs within each phenotypic subgroup;
(2) Determine the optimal modifiable intraoperative ventilatory parameters associated with the lowest severity
of PPCs within each phenotypic subgroup; and (3) Explore machine learning algorithms for predictive models
of the incidence of PPCs on patient, surgical, and anesthesia characteristics as well as intraoperative ventilator
parameters. The goal of this aim is to gain knowledge and training in machine learning to lay a foundation for
postdoctoral training.
Training: My long-term training goal is to become a leading nurse scientist in precision health using data
science to improve patient outcomes following surgery, such as reducing PPCs. To achieve this goal, I have
three short-term goals during my fellowship training: (1) gain knowledge and skills in research design to
enhance precision health in anesthesiology to, (2) gain knowledge in advanced analytic techniques for
conducting research using big data, and (3) gain an advanced understanding of pulmonary physiology and
pathophysiology that influence anesthesia and patient surgical outcomes. This fellowship will allow me
protected time to reach my training goals and to build a foundation for my long-term career goals. During the
next twenty-six months as a trainee, I will obtain additional training in (1) research methods and design, (2)
advanced statistical methods, (3) precision health, and (4) advanced pulmonary physiology and
pathophysiology.
抽象的
科学:五分之一的患者在30天内死于术后肺部并发症(PPC)
手术。 PPC是第二频繁的手术并发症,导致入院增加
重症监护病房,住院时间较长和资源高。呼吸机诱导肺损伤
(VILI)继发于术中机械通气是PPC的风险。肺部保护通风,
需要较低的潮汐量,足够的正末端呼气压力,最佳的吸气时间和肺泡
招募动作已被用于术中用途,以保护肺实质免受VILI
并最终降低PPC的发病率。但是,我们仍然不知道最佳呼吸机参数以产生
PPC的最低发病率,因为最佳因素因患者而异。个性化呼吸机
参数是解决此问题的潜在解决方案。回顾性研究利用电子健康
提出了记录(EHR),以通过表型来识别PPC风险。
一般麻醉带有机械通气。该项目的具体目的是:(1)检查
基于不可修改患者的总体研究人群和表型患者的PPC的发病率,
手术和麻醉特征;并检查每个表型亚组中PPC的发生率;
(2)确定与最低严重程度相关的最佳可修改术中通气参数
每个表型亚组中的PPC; (3)探索用于预测模型的机器学习算法
PPC在患者,外科和麻醉特征以及术中呼吸机上的发生率
参数。这个目的的目的是获得机器学习的知识和培训,以奠定
博士后培训。
培训:我的长期培训目标是使用数据成为精确健康的领先护士科学家
科学以改善手术后的患者结局,例如减少PPC。为了实现这一目标,我有
在我的奖学金培训期间的三个短期目标:(1)获得研究设计方面的知识和技能
提高麻醉学的精度健康,(2)获得高级分析技术知识的知识
使用大数据进行研究,(3)对肺部生理学和
影响麻醉和患者手术结果的病理生理。这个奖学金可以让我
保护时间以实现我的训练目标并为我的长期职业目标建立基础。在
接下来的二十六个月作为学员,我将获得(1)研究方法和设计的其他培训,(2)
先进的统计方法,(3)精度健康和(4)高级肺部生理学和
病理生理学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring phenotype-based ventilator parameter optimization to mitigate postoperative pulmonary complications: a retrospective observational cohort study.
探索基于表型的呼吸机参数优化以减轻术后肺部并发症:一项回顾性观察队列研究。
- DOI:10.1007/s00595-023-02785-8
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Tsumura,Hideyo;Brandon,Debra;Vacchiano,Charles;Krishnamoorthy,Vijay;Bartz,Raquel;Pan,Wei
- 通讯作者:Pan,Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hideyo Tsumura其他文献
Hideyo Tsumura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ACTFAST: Urban and Rural Trauma Centers RE-AIM at Firearm Injury Prevention
ACTFAST:城乡创伤中心重新瞄准枪支伤害预防
- 批准号:
10812044 - 财政年份:2023
- 资助金额:
$ 3.55万 - 项目类别:
The WUSTL PREP post-bacc program to enhance doctoral readiness in neuroscience
WUSTL PREP post bacc 项目旨在提高神经科学博士的准备程度
- 批准号:
10611674 - 财政年份:2023
- 资助金额:
$ 3.55万 - 项目类别:
Sustainability determinants of an intervention to identify clinical deterioration and improve childhood cancer survival in low-resource hospitals
在资源匮乏的医院中识别临床恶化并提高儿童癌症生存率的干预措施的可持续性决定因素
- 批准号:
10562780 - 财政年份:2023
- 资助金额:
$ 3.55万 - 项目类别:
Vision Impairment in the National Health and Aging Trends Study: Epidemiology, Social Determinants of Health, and Adverse Late Life Outcomes
国家健康和老龄化趋势研究中的视力障碍:流行病学、健康的社会决定因素和不良的晚年结局
- 批准号:
10730418 - 财政年份:2023
- 资助金额:
$ 3.55万 - 项目类别:
Adaption of the Transition of Care Model for Post-Discharge HIV-NCD care in Malawi
马拉维出院后艾滋病毒非传染性疾病护理的护理模式转变
- 批准号:
10750007 - 财政年份:2023
- 资助金额:
$ 3.55万 - 项目类别: