Using the C. elegans Oocyte to Model the Cell Biology of Early Onset Dystonia
使用线虫卵母细胞模拟早发性肌张力障碍的细胞生物学
基本信息
- 批准号:9021284
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAnimalsBiochemicalBiologicalCaenorhabditis elegansCell NucleusCell physiologyCellsCellular biologyChildDefectDevelopmentDystoniaEarly Onset DystoniaEmbryoEmbryonic DevelopmentEssential TremorExperimental ModelsGenesGeneticGenetic ModelsGenetic ScreeningGlutamic AcidGoalsGrowthHomologous GeneHumanImageInheritedLifeLimb structureMediatingMeiosisMessenger RNAModelingMolecularMolecular GeneticsMovement DisordersMuscle ContractionMutationNematodaNeurologicNeuronsNuclear EnvelopeNuclear ExportOocytesOogenesisParkinson DiseasePathogenesisPathway interactionsPositioning AttributePosturePrevalenceProcessProtein BiosynthesisProteinsRecovery of FunctionResearchResolutionRibonucleoproteinsRoleSiteSuppressor MutationsSymptomsSynapsesSystemTestingTorsinATranslatingTranslational RegulationWalkingWorkbasecellular imagingearly onsetexperiencefunctional restorationgenetic manipulationhigh rewardhigh riskinsightmRNA Exportmutantneuromuscular functionnovelparticleprotein complexprotein functionrestorationtemporal measurementtooltrafficking
项目摘要
ABSTRACT
Early onset dystonia or DYT1 dystonia is a debilitating neurological movement disorder that first presents in
children at a mean age of about 12. DYT1 dystonia is caused by a mutation in the DYT1/Tor1a gene that
encodes the evolutionarily conserved torsinA protein resulting in the deletion of a single glutamic acid residue
(ΔE302/303 or ΔE). The mechanism through which the ΔE mutation causes DYT1 dystonia is unclear because
the basic cellular function of torsinA is unknown. Intriguing new work suggests that torsinA might function in a
new cellular mechanism by which large ribonucleoprotein particles (RNPs) are exported from the nucleus via
budding through the nuclear envelope. When this function of torsinA is perturbed, messenger RNAs appear to
inefficiently traffic to their synaptic sites of protein synthesis, compromising neuromuscular function. The field
needs to know whether this new model is correct, and if so, to identify the specific molecular mechanisms by
which torsinA promotes nuclear envelope budding for RNP export.
This application seeks to address these goals using the oocytes of the nematode Caenorhabditis
elegans as a tractable experimental model. Mutations in the best characterized C. elegans torsinA homolog
(called ooc-5 for oocyte formation abnormal five) cause defects in oocyte growth. The oocyte growth defect is
the earliest developmental abnormality observed in ooc-5 mutants and therefore is likely reflective of the
primary underlying biochemical and cell biological deficits observed in cells lacking torsinA/OOC-5 function.
Our hypothesis is that ooc-5 mutations disrupt oogenesis by interfering in part with the nuclear export
assembly, or function of oocyte growth-promoting RNPs that we have defined. Given its extensive evolutionary
conservation, OOC-5/torsinA is likely to perform the same elemental protein function in C. elegans oocytes and
mammalian neurons. Interestingly, prior work has shown that the mechanisms of translational regulation
discovered in C. elegans oocytes are also important for the development and function mammalian neurons.
This proposal capitalizes on the many experimental advantages afforded by the C. elegans germline system,
including the ability to conduct high-resolution live-cell imaging and the ease of molecular genetic and
biochemical manipulations. Further, our group has spent two decades pioneering the mechanisms controlling
oocyte development in C. elegans. Recently, we defined proteins and mRNA components of RNPs that
regulate the growth, meiotic development, and developmental potential of C. elegans oocytes. Our research
team is thus ideally positioned to critically test the generality of an RNP budding role for torsinA. To assess this
new role for torsinA, we will: (1) Analyze the cellular mechanisms by which OOC-5 controls the oocyte growth
process; and (2) Define genetic networks that can restore function to ooc-5/torsinA mutants.
抽象的
早期发作肌张力障碍或dyt1a是一种令人衰弱的神经运动器滴度,呈现在
平均年龄大约12岁的孩子。肌张力障碍因dyt1/tor1a基因突变而造成caud ud ud
编码进化保守的龙田蛋白
(ΔE302/303或ΔE)。
Torsina的基本细胞功能是未知的。
大型核糖核蛋白颗粒(RNP)通过核从细胞核中导出的新细胞机制
通过核包膜发芽。
无效的蛋白质合成的突触部位,损害了神经肌肉功能。
需要知道这个新模型是否正确,如果是这样
Torsina促进了RNP出口的核包络。
该申请旨在使用线虫Caenorhabditis的卵母细胞解决这些目标
秀丽隐杆线作为一种可牵引的实验模型。
(称为卵母细胞形成异常的OOC-5)导致卵母细胞生长的缺陷。
在OOC-5突变体中观察到的高光发育异常,因此可能反映了您
在缺乏Torsina/OOC-5功能的细胞中观察到的主要潜在生化和细胞生物学缺陷。
我们的假设是OOC-5突变通过部分干扰核的卵子发生
我们定义的组装或促卵母细胞生长的RNP的功能。
保护,OOC-5/Torsina可能在秀丽隐杆线虫卵母细胞中执行相同的元素蛋白功能,并且
哺乳动物神经元。
在秀丽隐杆线虫中发现的卵母细胞对于发育和功能哺乳动物神经元也很重要。
该提案利用了C.秀丽隐杆线虫种系系统提供的许多实验优势,
包括进行高分辨率活细胞成像的能力以及分子遗传和
生化操纵。
秀丽隐杆线虫的卵母细胞发育。
调节秀丽隐杆线虫卵巢的生长,减数分裂的发育和发育潜力
因此,团队是理想的定位,可以严格测试滚动角色的一般性
Torsina的新作用,我们将:(1)分析OOC-5控制卵母细胞生长的细胞机制
过程;(2)定义可以将功能恢复为OOC-5/Torsina muts的遗传网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Irwin Greenstein其他文献
David Irwin Greenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Irwin Greenstein', 18)}}的其他基金
The C. elegans Germline: A Test Tube for Cell and Developmental Biology
线虫种系:细胞和发育生物学的试管
- 批准号:
10893272 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
The C. elegans Germline: A Test Tube for Cell and Developmental Biology
线虫种系:细胞和发育生物学的试管
- 批准号:
10794670 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
The C. elegans Germline: A Test Tube for Cell and Developmental Biology
线虫种系:细胞和发育生物学的试管
- 批准号:
10328427 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
The C. elegans Germline: A Test Tube for Cell and Developmental Biology
线虫种系:细胞和发育生物学的试管
- 批准号:
10578828 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Training Research Educators in Minnesota (TREM) whilst increasing diversity
明尼苏达州研究教育工作者培训 (TREM),同时增加多样性
- 批准号:
9895826 - 财政年份:2017
- 资助金额:
$ 22.8万 - 项目类别:
A COPAS BIOSORT Flow Cytometer for Caenorhabditis elegans Molecular Genetics
用于检测秀丽隐杆线虫分子遗传学的 COPAS BIOSORT 流式细胞仪
- 批准号:
8048454 - 财政年份:2011
- 资助金额:
$ 22.8万 - 项目类别:
ANALYSIS OF THE STE13 COMPLEX IN S. POMBE
粟酒裂殖酵母中 STE13 复合体的分析
- 批准号:
6979678 - 财政年份:2004
- 资助金额:
$ 22.8万 - 项目类别:
相似国自然基金
粪便mtDNA异质性特征及其在哺乳动物年龄估算中的意义
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
EEDA在RPE细胞中的功能及其在年龄相关性视网膜病变中的机制研究
- 批准号:81770946
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
sFlt-1基因靶向敲除诱导鼠新生血管性眼底病及其机制的实验研究
- 批准号:81271016
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
Robo4基因敲除诱导小鼠年龄相关性视网膜变性及机制研究
- 批准号:81170853
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
siRNA沉默蛋白酶体β亚基基因诱导小鼠年龄相关性黄斑变性及其分子机制的研究
- 批准号:81000390
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
- 批准号:
10686592 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别: