Project 4: UW-CNOF Biological Model Development and Data Generation
项目 4:UW-CNOF 生物模型开发和数据生成
基本信息
- 批准号:9021415
- 负责人:
- 金额:$ 51.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllelesArchitectureBenchmarkingBiological ModelsBreathingCardiacCardiac MyocytesCardiac developmentCardiomyopathiesCardiovascular systemCell LineCell NucleusCellsCessation of lifeChromatinChromosomesChromosomes, Human, Pair 21Clustered Regularly Interspaced Short Palindromic RepeatsComputing MethodologiesCuesDataDeoxyribonucleasesDevelopmentDilated CardiomyopathyDiseaseDisease modelDown SyndromeEndothelial CellsEndotheliumEpigenetic ProcessFunctional disorderGenerationsGenesGenomeGerm LayersGoalsHeartHereditary DiseaseHumanHuman DevelopmentHuman EngineeringInduced MutationLamin Type AMapsMechanical StressMesodermMethodsModelingMolecular CytogeneticsMusMutationNuclearNuclear EnvelopeNuclear Matrix-Associated ProteinsNuclear StructurePathogenesisPatientsPhenotypePluripotent Stem CellsRegulatory PathwayRoleSeriesStagingStressSystemTechniquesTechnologyTestingTissuesUniversitiesVentricular Septal DefectsWashingtonabstractingatrioventricular septal defectbasecardiogenesiscell typecongenital heart disorderdevelopmental diseasehuman diseasehuman embryonic stem cellin vivoinduced pluripotent stem cellinsightmembermodel developmentprogenitorprogramsrepairedresearch studyresponsetooltranscription factor
项目摘要
ABSTRACT – PROJECT 4: UW-CNOF BIOLOGICAL MODEL DEVELOPMENT AND DATA GENERATION
Projects 1-3 develop new experimental and computational methods for mapping and modeling genome
architecture and then validate these methods against established benchmarks in molecular cytogenetics. As
these technologies come into place, Project 4 focuses on establishing biological models for studying nuclear
architecture and assessing how this architecture evolves during development, disease, or in response to
environmental stress. We will use our well-developed system of differentiating human embryonic stem cells
(hESCs) and induced pluripotent stem cells (hiPSCs) into cardiomyocytes and endothelial cells. This system
has been used successfully as part of the ENCODE project to identify dynamic chromatin signatures that mark
cardiovascular developmental regulators. Recent studies suggest that differences in nuclear architecture are
established early in development, but we know little about how stable these differences are or whether
structurally interacting domains can identify new regulatory pathways. Similarly, we know almost nothing about
how nuclear architecture evolves during disease or whether such changes are drivers or passengers in
disease pathogenesis. Our goals are to perform a key series of experiments that will be enabled by DNase Hi-
C and other mapping approaches in our program. In Aim 1, we will define the dynamics of nuclear architecture
during the differentiation of naïve hESCs into cardiomyocytes and endothelial cells. This study utilizes the
newly derived ELF1 cell line, a naïve hESC at the earliest stage of development, and tracks the dynamics of
nuclear architecture using bulk and single-cell DNase Hi-C. We will study differentiation into primed hESCs,
mesoderm, cardiovascular progenitors, and definitive cardiomyocytes and endothelium. Comparison with
established transcription factor and epigenetic networks will identify spatial clusters of coordinately activated
and repressed genes that regulate heart development. In Aim 2, we will test the hypothesis that
cardiomyopathy-inducing mutations in the nuclear scaffolding protein, lamin A/C (LMNA), are associated with
derangements in cardiomyocyte nuclear architecture. We will study hiPSCs from patients with LMNA-induced
dilated cardiomyopathy and genetically repaired, isogenic controls to determine if LMNA mutations unfavorably
change nuclear architecture in cardiomyocytes. Additionally, we will test the hypothesis that sub-lethal
mechanical stress exacerbates this deranged architecture. In Aim 3, we will determine the changes in nuclear
architecture induced by trisomy 21 (Down Syndrome). Down Syndrome is the most common cause of
congenital heart disease, and we hypothesize that the additional chromosome 21 results in disease-causing
alterations in nuclear structure. We will study isogenic lines of hiPSCs with and without trisomy 21 in bulk and
at the single-cell level to determine how nuclear architecture is perturbed by an additional chromosome 21.
Interactions that are gained or lost will identify candidate loci for causing congenital heart disease.
摘要 – 项目 4:UW-CNOF 生物模型开发和数据生成
项目 1-3 开发用于基因组绘图和建模的新实验和计算方法
架构,然后根据分子细胞遗传学的既定基准验证这些方法。
这些技术到位后,项目4专注于建立研究核的生物模型
架构并评估该架构在发育、疾病或响应过程中如何演变
我们将使用我们成熟的分化人类胚胎干细胞系统。
(hESC) 和诱导多能干细胞 (hiPSC) 转化为心肌细胞和内皮细胞。
已成功用作 ENCODE 项目的一部分,用于识别标记的动态染色质特征
最近的研究表明核结构的差异。
在开发早期就已确定,但我们对这些差异的稳定性或是否存在知之甚少
同样,我们对结构相互作用的域可以识别新的调控途径几乎一无所知。
疾病期间核结构如何演变,或者这种变化是疾病的驱动者还是乘客
我们的目标是进行一系列由 DNase Hi- 实现的关键实验。
在我们的程序中,C 和其他映射方法将定义核架构的动态。
本研究利用了幼稚 hESC 分化为心肌细胞和内皮细胞的过程。
新衍生的 ELF1 细胞系是处于发育最早阶段的幼稚 hESC,并跟踪
使用批量和单细胞 DNase Hi-C 的核结构我们将研究分化为引发的 hESC,
中胚层、心血管祖细胞、定形心肌细胞和内皮细胞的比较。
建立的转录因子和表观遗传网络将识别协调激活的空间簇
在目标 2 中,我们将检验以下假设:
核支架蛋白核纤层蛋白 A/C (LMNA) 中诱发心肌病的突变与
我们将研究 LMNA 诱导的患者的 hiPSC。
扩张型心肌病和基因修复、同基因对照以确定 LMNA 突变是否不利
此外,我们将检验亚致死的假设。
机械应力加剧了这种混乱的结构。在目标 3 中,我们将确定核的变化。
21 三体(唐氏综合症)引起的结构是唐氏综合症的最常见原因。
先天性心脏病,我们发现额外的 21 号染色体会导致疾病
我们将大量研究具有和不具有 21 三体性的 hiPSC 的同基因系。
在单细胞水平上确定额外的 21 号染色体如何扰乱核结构。
获得或失去的相互作用将确定导致先天性心脏病的候选位点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles E Murry其他文献
Charles E Murry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles E Murry', 18)}}的其他基金
Function, composition, and mechanism of RNA splicing factories in cardiomyopathy
RNA剪接工厂在心肌病中的功能、组成和机制
- 批准号:
10583011 - 财政年份:2022
- 资助金额:
$ 51.16万 - 项目类别:
Metabolic and Transcriptional Reprogramming of Cardiac Maturation
心脏成熟的代谢和转录重编程
- 批准号:
10202988 - 财政年份:2021
- 资助金额:
$ 51.16万 - 项目类别:
Metabolic and Transcriptional Reprogramming of Cardiac Maturation
心脏成熟的代谢和转录重编程
- 批准号:
10579257 - 财政年份:2021
- 资助金额:
$ 51.16万 - 项目类别:
Metabolic and Transcriptional Reprogramming of Cardiac Maturation
心脏成熟的代谢和转录重编程
- 批准号:
10378094 - 财政年份:2021
- 资助金额:
$ 51.16万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 51.16万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 51.16万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 51.16万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 51.16万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 51.16万 - 项目类别: