Role of Myeloid Derived Suppressor Cells in the Immune Response to Surgery

骨髓源性抑制细胞在手术免疫反应中的作用

基本信息

  • 批准号:
    8911350
  • 负责人:
  • 金额:
    $ 13.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Surgical trauma produces a profound inflammatory response that, when deregulated, leads to adverse surgical outcomes including protracted recovery, infection, and organ dysfunction. The immune response to surgery involves complex, multi-cellular mechanisms that are poorly understood. The long-term goals of this proposal are to: 1) use a systems-wide approach to enumerate and characterize the major immune cell subsets, on a cell-by-cell basis, from whole blood samples taken from patients undergoing surgery; 2) understand the mechanistic basis of immune-modulatory interventions designed to improve surgical outcomes (e.g., L-arginine supplementation); 3) understand the interplay between innate and adaptive immunity in order to identify specific mechanisms that are critical for patients' recovery from surgery. To achieve these goals, Dr. Gaudilliere will use a next-generation flow cytometry platform (Cytometry by Time of Flight or CyTOF), recently pioneered and brought to practical utility in the laboratory of Dr. Garry Nolan (Professor of Microbiology and Immunology, Stanford University and primary mentor for this K23 award). Uniting flow cytometry with mass spectrometry enables readouts from rare earth metal isotopes tagged to antibodies. In contrast to traditional fluorescence-based cytometry, the absence of overlap between detection signals allows for a dramatic increase in the number of parameters that can be measured at the single-cell level (currently up to 45). In a pilot study and working under the guidance of Drs. Garry Nolan and Martin Angst (Professor of Anesthesiology, Stanford University), Dr. Gaudilliere established a quantitative and reproducible mass cytometry assay with which to monitor the immune response in patients undergoing hip replacement (i.e., total hip arthroplasty). The data from this study form the groundwork for Dr. Gaudilliere's core hypothesis that Surgery-induced Myeloid Cells (SiMCs) phenocopy MDSCs and suppress the CD8+ T cell adaptive immune response to surgery via an L-arginine-dependent mechanism. In Aim 1, Dr. Gaudilliere will build an in vitro system to investigate whether SiMCs suppress terminal effector CD8+ T cell (CD8+Teff) function via an L- arginine-dependent mechanism. In Aim 2, Dr. Gaudilliere proposes a first interventional clinical trial that will use mass cytometry o investigate whether L-arginine supplementation in patients undergoing THA will restore CD8+Teff response in vivo. In Aim 3, Dr. Gaudilliere will adapt and implement statistical tools and learning algorithms (e.g., the least absolute shrinkage and selection operator or LASSO) to investigate whether patient- specific immune features predict surgery-induced expansion of SiMCs and suppression of CD8+Teff cells. Dr. Gaudilliere is an anesthesiologist at Stanford University School of Medicine with a background in engineering, biochemistry, and molecular biology, and is therefore exceptionally well qualified to address these aims. The Nolan Lab, acknowledged as world-class in the application of mass cytometry to single-cell analysis, will provide Dr. Gaudilliere with the opportunity and environment to acquire the skills for him to become a leading expert in this technology. Furthermore, Dr. Gaudilliere is supported by a multidisciplinary and collaborative team with expertise in signaling biology, human immunology, statistics and bio-informatics, and clinical experimental science and trial design. He will also benefit from the combined strength and resources provided by the Stanford Departments of Anesthesiology, Immunology, and Statistics. To accomplish his research goals and prepare him for a career as an independent investigator, Dr. Gaudilliere has created a multi-disciplinary career development plan incorporating: 1) advanced training in human immunology and immune monitoring with mass cytometry; 2) graduate level didactics in epidemiology and mentored training in clinical study design; and 3) graduate level didactics and mentored training in biostatistics, data mining, and application of machine learning methods for the analysis of complex datasets derived from mass cytometry. In summary, single-cell mass cytometry will be utilized to monitor immune responses to surgery at the systems level in vivo. This approach will not only elucidate specific mechanisms (e.g., arginine-dependent SiMC-mediated suppression of CD8+ T cells) but will also characterize these mechanisms as they occur in the context of the entire immune system. The multidimensional attribute of the data will necessarily generate deeper and potentially more clinically relevant hypotheses than previously posed. The output of this proposal constitutes a data-driven strategy to guide future research efforts and R01 applications to identify patient- specific immune traits predictive of surgical outcomes and explore novel immune-modulatory strategies to improve recovery from surgery.
描述(由申请人提供):手术创伤会产生深刻的炎症反应,当受管制时,会导致不良的手术结果,包括旷日持久的恢复,感染和器官功能障碍。对手术的免疫反应涉及复杂的多细胞机制,这些机制知之甚少。该提案的长期目标是:1)使用全系统的方法列举和表征主要的免疫细胞亚群,并根据细胞细胞为基础,从接受手术的患者中获取的全血样本。 2)了解旨在改善手术结果的免疫调节干预措施的机理基础(例如,补充L-精氨酸); 3)了解先天和适应性免疫之间的相互作用,以确定对患者从手术中恢复至关重要的特定机制。为了实现这些目标,Gaudilliere博士将使用下一代流式细胞仪平台(按飞行时间或Cytof进行细胞仪),该平台最近在Garry Nolan博士(斯坦福大学,斯坦福大学和该K23奖的主要导师)的实验室中开创并带到了实用实用程序。与质谱的统一流式细胞仪可以从标记为抗体的稀土金属同位素的读数。与传统的基于荧光的细胞仪相反,检测信号之间没有重叠的情况,可以显着增加可以在单细胞水平(当前高达45个)测量的参数数量。在一项试点研究和在DRS的指导下工作。 Garry Nolan和Martin Angst(斯坦福大学麻醉学教授)Gaudilliere博士建立了一种定量且可再现的质量细胞仪测定法,以监测接受髋关节置换术(即总髋关节置换术)患者的免疫反应。这项研究的数据构成了Gaudilliere博士的核心假设的基础,即手术诱导的髓样细胞(SIMC)表疗MDSC并通过L-精氨酸依赖性机制抑制CD8+ T细胞自适应免疫对手术的反应。在AIM 1中,Gaudilliere博士将建立一个体外系统,以研究SIMC是否通过L-精氨酸依赖性机制抑制末端效应子CD8+ T细胞(CD8+ TEFF)功能。在AIM 2中,Gaudilliere博士提出了第一个介入的临床试验,该试验将使用质量细胞术o研究接受THA患者的L-精氨酸补充是否会恢复体内CD8+TEFF反应。在AIM 3中,Gaudilliere博士将适应和实施统计工具和学习算法(例如,绝对绝对收缩和选择操作员或LASSO),以研究患者特定的特定免疫特征是否可以预测手术诱导的SIMC的扩展以及CD8+TEFF细胞的抑制。 Gaudilliere博士是斯坦福大学医学院的麻醉师,具有工程,生物化学和分子生物学背景,因此具有出色的资格来解决这些目标。诺兰实验室(Nolan Lab)在将质量细胞术应用于单细胞分析中被认为是世界一流的,它将为Gaudilliere博士提供机会和环境,以获取他成为该技术领先专家的技能。此外,Gaudilliere博士得到了一个多学科和协作团队的支持,该团队在信号生物学,人类免疫学,统计和生物信息学以及临床实验科学与试验设计方面具有专业知识。他还将受益于斯坦福大学麻醉,免疫学和统计学部门提供的综合力量和资源。为了实现他的研究目标并为他做好独立研究者的职业做好准备,Gaudilliere博士制定了一项多学科职业发展计划,其中包括:1)通过大规模细胞仪进行人体免疫学和免疫监测的高级培训; 2)流行病学研究生级教学法和临床研究设计的指导培训; 3)研究生水平的教学和指导培训在生物统计学,数据挖掘以及机器学习方法的应用中用于分析源自质量细胞术的复杂数据集。总之,将利用单细胞质量细胞仪监测体内系统水平的手术的免疫反应。这种方法不仅将阐明特定的机制(例如,精氨酸依赖性的SIMC介导的CD8+ T细胞抑制),还将表征这些机制,因为它们在整个免疫系统的背景下发生。数据的多维属性必然会比以前提出的更深入,可能更具有临床相关的假设。该提案的输出构成了一种数据驱动的策略,旨在指导未来的研究工作和R01应用程序,以确定患者特定的免疫特征,可预测手术结局,并探讨新的免疫调节策略,以改善手术中的恢复。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brice Gaudilliere其他文献

Brice Gaudilliere的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brice Gaudilliere', 18)}}的其他基金

Harnessing the human monocyte system to improve surgical recovery
利用人类单核细胞系统改善手术康复
  • 批准号:
    10227160
  • 财政年份:
    2020
  • 资助金额:
    $ 13.1万
  • 项目类别:
Harnessing the human monocyte system to improve surgical recovery
利用人类单核细胞系统改善手术康复
  • 批准号:
    10675540
  • 财政年份:
    2020
  • 资助金额:
    $ 13.1万
  • 项目类别:
Harnessing the human monocyte system to improve surgical recovery
利用人类单核细胞系统改善手术康复
  • 批准号:
    10449343
  • 财政年份:
    2020
  • 资助金额:
    $ 13.1万
  • 项目类别:
Harnessing the human monocyte system to improve surgical recovery
利用人类单核细胞系统改善手术康复
  • 批准号:
    10027267
  • 财政年份:
    2020
  • 资助金额:
    $ 13.1万
  • 项目类别:
Role of Myeloid Derived Suppressor Cells in the Immune Response to Surgery
骨髓源性抑制细胞在手术免疫反应中的作用
  • 批准号:
    8753053
  • 财政年份:
    2014
  • 资助金额:
    $ 13.1万
  • 项目类别:
Role of Myeloid Derived Suppressor Cells in the Immune Response to Surgery
骨髓源性抑制细胞在手术免疫反应中的作用
  • 批准号:
    9127989
  • 财政年份:
    2014
  • 资助金额:
    $ 13.1万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
  • 批准号:
    10585553
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
  • 批准号:
    10636536
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
  • 批准号:
    10742197
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
  • 批准号:
    10659842
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
Developing microwave epiphysiodesis to correct limb length discrepancies
开发微波骨骺固定术以纠正肢体长度差异
  • 批准号:
    10804031
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了