Improved Performance of Neonatal Vascular Access Catheters via 3D Magnetic Printing
通过 3D 磁性打印提高新生儿血管通路导管的性能
基本信息
- 批准号:9011392
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-17 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAnatomyArchitectureAutomobile DrivingBenchmarkingBiocompatibleBlood VesselsCaliberCathetersCeramicsCharacteristicsChildhoodClinical TreatmentComplexDevelopmentDevicesDimensionsExhibitsFiberFibrinFilmFinite Element AnalysisGeometryHealthHydroxyapatitesInfantInfectionLateralLengthLiquid substanceMagnetismMeasurementMechanicsMedicalMethodsModelingNeonatalNeonatal Intensive Care UnitsPathway interactionsPatientsPerforationPerformancePhasePhysiological ProcessesPolymersPolyurethanesPopulationPrecipitationPrintingProbabilityProcessProductionPropertyPsychological reinforcementRadialResearchResistanceSamplingSiliconesSuctionTechniquesTensile StrengthTestingTherapeuticThickThrombusTubeUniversitiesWorkcalcium phosphatecostdesignflexibilityimprovedinstrumentationmagnetic fieldnext generationnovelpatient populationpediatric patientspressureprogramspublic health relevancesuccesstool
项目摘要
DESCRIPTION (provided by applicant): Clinical treatment of infants in the neonatal intensive care unit (NICU) is particularly challenging due to their small anatomies, medical instability, and
immature physiological processes. Treatment is often complicated by the lack of therapeutic devices and instrumentation designed specifically to accommodate this unique patient population. For instance, current vascular access catheters are not specifically designed and customized for the very small vasculature of neonatal patients, which exacerbates common complications including vessel perforation, thrombotic occlusions, catheter breakage, and infection. Creating sophisticated, patient-specific neonatal catheters would dramatically reduce these complications and work to better serve this population. 3D printing offers the ability to generate complex and patient-specific 3D architectures. Our collaborators at Northeastern University are pioneering 3D Magnetic Printing, a new technique in which reinforcing ceramic fibers are aligned with magnetic fields during the printing process to create composites with highly tunable reinforcement architectures. We will use 3D Magnetic Printing to produce strong, flexible, patient-specific neonatal vascular access catheters. Specifically, we will generate customizable composite catheter tubing with enhanced wall stiffness and strength while maintaining flexibility, burst strength and kink resistance. Such a novel design approach will allow production of next generation neonatal vascular access catheters with thinner walls, permitting reduction of catheter diameters and/or higher fluid transport rates. 3D Magnetic Printing of neonatal catheters offers the advantages of improved resistance to catheter sidewall collapse and kinking that often leads to catheter occlusion, and higher fluid transport rates which
will minimize the probability of thrombus and fibrin sheath formation. Furthermore, the 3D printing technique is compatible with conventional catheter materials such as polyurethane and silicone and allows utilization of biocompatible fibers like hydroxyapatite facilitating regulatory
approval pathways. The printing method is robust, low cost, and scalable. In Phase I we will print a variety of catheter tubing with customized fiber architectures including longitudinal, lateral, and radial reinforcement using both polyurethane and silicone. Sample characterization will be used to fine tune a finite element analysis model of the material. This model will be used to design improved tubing for comparison to conventionally extruded tubing. Our primary objective is to demonstrate the production of tubing with reduced wall thickness, optimized mechanical properties, and enhanced flow characteristics. In Phase II this model will be used to design functional catheters having complex reinforcement architecture.
描述(由应用提供):新生儿重症监护病房(NICU)中婴儿的临床治疗特别具有挑战性
未成熟的生理过程。缺乏专门设计的治疗装置和仪器,通常会使治疗变得复杂。例如,目前的血管通道导管不是针对新生儿患者非常小的脉管系统的专门设计和定制的,这些脉管系统加剧了常见并发症,包括血管穿孔,血小板闭塞,导管断裂和感染。创建精致的,特定于患者的新生儿导管将大大减少这些并发症,并努力更好地为人群服务。 3D打印提供了生成复杂和特定于患者的3D体系结构的能力。我们在东北大学的合作者是开创性的3D磁打印,这是一种新技术,在印刷过程中,增强陶瓷纤维与磁场对齐,以创建具有高度可调的增强架构的复合材料。我们将使用3D磁打印来产生强,灵活,患者特异性的新生儿血管通道导管。具体而言,我们将生成具有增强的壁刚度和强度的可定制复合导管块茎,同时保持柔韧性,突发强度和扭结性。这种新颖的设计方法将允许生产具有较薄墙壁的下一代新生儿血管通道导管,从而可以降低导管直径和/或较高的流体传输速率。新生儿导管的3D磁打印具有提高导管侧壁塌陷和扭结的耐药性,通常会导致导管闭塞,以及较高的流体传输速率,这些速率较高
将最小化血栓和纤维蛋白鞘形成的可能性。此外,3D打印技术与常规导管材料(例如聚氨酯和硅酮)兼容,并允许利用生物相容性纤维(如氢X型)促进调节
批准途径。打印方法是健壮的,低成本的,可扩展的。在第一阶段,我们将使用定制的纤维结构打印各种导管管,包括使用聚氨酯和硅酮均使用纵向,侧面和径向加固。样品表征将用于微调材料的有限元分析模型。该模型将用于设计改进的管道,以与常规挤出的管道进行比较。我们的主要目的是证明壁厚,优化的机械性能和增强的流动特性的管道产生。在第二阶段中,该模型将用于设计具有复杂增强体系结构的功能导管。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JASON E BURNS其他文献
JASON E BURNS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JASON E BURNS', 18)}}的其他基金
Long-term Prevention of Peri-Implantitis via Nano-textured, TiO/Ag Surfaces
通过纳米纹理 TiO/Ag 表面长期预防种植体周围炎
- 批准号:
8979247 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Antimicrobial Biodegradable Bone Graft for Craniofacial/Maxillofacial Application
用于颅面/颌面应用的抗菌可生物降解骨移植物
- 批准号:
9352308 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Nano-Crystalline Ceramic Coatings for the Reduction of Sliding Resistance of Orth
降低滑动阻力的纳米晶陶瓷涂层
- 批准号:
8729439 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Nano-Crystalline Ceramic Coatings for the Reduction of Sliding Resistance of Orth
降低滑动阻力的纳米晶陶瓷涂层
- 批准号:
8198677 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Nano-Crystalline Ceramic Coatings for the Reduction of Sliding Resistance of Orth
降低滑动阻力的纳米晶陶瓷涂层
- 批准号:
8819807 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Nanocrystalline Zirconia Orthopedic Coating for Reduced Poyethylene Wear
用于减少聚乙烯磨损的纳米晶氧化锆矫形涂层
- 批准号:
7272187 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
CoCr/TiN Superlattice Hard Coatings for Spinal Implants
用于脊柱植入物的 CoCr/TiN 超晶格硬质涂层
- 批准号:
7053979 - 财政年份:2006
- 资助金额:
$ 22.5万 - 项目类别:
CoCr/TiN Superlattice Hard Coatings for Spinal Implants
用于脊柱植入物的 CoCr/TiN 超晶格硬质涂层
- 批准号:
7268924 - 财政年份:2006
- 资助金额:
$ 22.5万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Ingestible Pill for spatially targeted sampling of gut microbiome
用于肠道微生物组空间靶向采样的可摄入药丸
- 批准号:
10642791 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Ingestible Pill for spatially targeted sampling of gut microbiome
用于肠道微生物组空间靶向采样的可摄入药丸
- 批准号:
10424745 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别: