Integration of brain imaging with genomic and epigenomic data
脑成像与基因组和表观基因组数据的整合
基本信息
- 批准号:8896068
- 负责人:
- 金额:$ 51.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithm DesignBehaviorBiologicalBiological MarkersBiomedical EngineeringBipolar DisorderBrainBrain imagingCharacteristicsClassificationCodeCommunitiesComputer SimulationComputer softwareComputing MethodologiesCorrelation StudiesDataData CorrelationsDatabasesDetectionDiagnosisDimensionsDiscriminationDiseaseDisease ManagementExhibitsFunctional Magnetic Resonance ImagingGenesGeneticGenetic EpistasisGenetic MarkersGenetic VariationGenetic studyGenomic approachGenomicsGiftsGoalsHealthImageImage AnalysisIndividualInterdisciplinary StudyInternetKnowledgeMental disordersMethodologyMethodsModalityModelingPathway AnalysisPropertyPsychiatristResearchResearch PersonnelSamplingSchizophreniaScientistSoftware ToolsSolutionsSubgroupSymptomsTechniquesTestingTranslatingVariantWorkaccurate diagnosisbasebioimagingdata integrationdata modelingdisease diagnosisepigenomicsimaging modalityimprovedinnovationinterestnervous system disorderneuroimagingnovelopen sourceoutcome forecastpersonalized carerepositoryrisk variantsoftware developmentsuccesstool
项目摘要
DESCRIPTION (provided by applicant): The goal of this project is to develop integrative approaches for the detection of biomarkers from multiscale genomic and imaging data, so that multiple mental illnesses such as schizophrenia (SC), Unipolar (UD) and bipolar (BI) disorder can be better identified. Imaging genetics is an emerging technique, which integrates imaging and genomic approaches to explore the association between genetic variations and brain functions and behaviors. Although it promises a better and more powerful approach for disease diagnosis and prognosis, the field is facing several major challenges: 1) First, most of current imaging genetics studies focus on pair-wise data correlation and integration; other important genetic factors such as epigenomics and genetic interactions (epistasis) have not been incorporated. 2) Second, multiscale imaging genetics data often exhibit specific characteristics such as inter- correlations, but this prior knowledge has not been incorporated into existing integrative models. 3) Finally, there is a high dimensionality problem with the analysis of imaging genetic data the number of sample is always significantly less than that of features. The solution of these problems necessitates a paradigm shift in computational models by considering the specific characteristics of these multiscale and multimodal data. Our multidisciplinary research team consisting of imaging scientist (Dr. Calhoun), statistical geneticist (Dr. Deng), biomedical engineer and bioimaging informatician (Dr. Wang), and psychiatrist (Dr. Pearson) has worked productively and creatively over the past few years in developing a number of data integration methods for fusion of imaging and genomic data. Building on our initial success, we will accomplish the following specific aims: 1) to study the correlation between multiple imaging and genomic data for the detection of epistasis factors or interaction networks; 2) to integrate multiscale imaging and genomic data, especially incorporating epistasis factors, for the identification of biomarkers, from which risk genes can be
better detected; 3) to apply the detected biomarkers for the classification of multiple mental illnesses that are currently based on symptoms and are often misdiagnosed; and 4) to develop and disseminate an open source sparse model based data integration toolbox to the broad research community. The project will make significant impact on more accurate classification of clinically cryptic subgroups (e.g., SC, UD, BI) with an innovative and integrative paradigm by taking into account specific features of multiscale imaging genomic data and incorporation of prior knowledge. This will bring transformative changes on the current diagnosis of these mental illnesses (e.g., primarily based on imaging symptoms, which are often inaccurate), promising for personalized and optimal treatments. The developed methodology and tools are also applicable to many other neurological and psychiatric disorders. By the dissemination of the developed software tools to the research community, the project will have a broad and sustained impact.
描述(由申请人提供):该项目的目标是开发从多尺度基因组和成像数据中检测生物标志物的综合方法,以便多种精神疾病,如精神分裂症(SC)、单相(UD)和双相(BI)可以更好地识别疾病。成像遗传学是一种新兴技术,它结合了成像和基因组方法来探索遗传变异与大脑功能和行为之间的关联。尽管它有望为疾病诊断和预后提供更好、更强大的方法,但该领域面临着几个重大挑战:1)首先,当前大多数影像遗传学研究都集中在成对数据关联和整合上;其他重要的遗传因素,例如表观基因组学和遗传相互作用(上位性)尚未纳入。 2)其次,多尺度成像遗传学数据通常表现出特定的特征,例如相互关联,但这种先验知识尚未纳入现有的综合模型中。 3)最后,成像遗传数据的分析存在高维问题,样本数量总是明显少于特征数量。这些问题的解决需要考虑这些多尺度和多模态数据的具体特征,从而改变计算模型的范式。 我们的多学科研究团队由影像科学家(Dr. Calhoun)、统计遗传学家(Dr. Deng)、生物医学工程师和生物影像信息学家(Dr. Wang)以及精神病学家(Dr. Pearson)组成,在过去的几年里一直富有成效和创造性地工作开发多种用于融合成像和基因组数据的数据集成方法。在我们初步成功的基础上,我们将实现以下具体目标:1)研究多重成像和基因组数据之间的相关性,以检测上位因子或相互作用网络; 2)整合多尺度成像和基因组数据,特别是结合上位因子,用于识别生物标志物,从中可以识别风险基因
更好地检测到; 3)将检测到的生物标志物应用于目前基于症状且经常被误诊的多种精神疾病的分类; 4) 开发并向广大研究界传播基于开源稀疏模型的数据集成工具箱。 该项目将通过考虑多尺度成像基因组数据的特定特征并结合先验知识,以创新和综合的范式对临床神秘亚组(例如 SC、UD、BI)进行更准确的分类产生重大影响。这将为当前对这些精神疾病的诊断带来革命性的变化(例如,主要基于影像学症状,这通常是不准确的),有望实现个性化和最佳治疗。开发的方法和工具也适用于许多其他神经和精神疾病。通过将开发的软件工具传播给研究界,该项目将产生广泛和持续的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINCE D CALHOUN其他文献
VINCE D CALHOUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINCE D CALHOUN', 18)}}的其他基金
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10410073 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10656608 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD
- 批准号:
10252236 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10197867 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10443779 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
9811339 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
- 批准号:
10157432 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10645089 - 财政年份:2019
- 资助金额:
$ 51.46万 - 项目类别:
COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
- 批准号:
9268713 - 财政年份:2015
- 资助金额:
$ 51.46万 - 项目类别:
相似国自然基金
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于机器学习和贝叶斯优化算法的药物结晶溶剂设计方法
- 批准号:22308228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
- 批准号:12361065
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
分布式机器学习算法设计与理论分析
- 批准号:62376008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
医用电子直线加速器设计模型中非线性特征值问题的算法及相关预处理研究
- 批准号:12371379
- 批准年份:2023
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators
创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施
- 批准号:
10696671 - 财政年份:2023
- 资助金额:
$ 51.46万 - 项目类别:
NeuroMAP Phase II - Data Management and Statistics Core
NeuroMAP 第二阶段 - 数据管理和统计核心
- 批准号:
10711138 - 财政年份:2023
- 资助金额:
$ 51.46万 - 项目类别:
Traumatic and Treatable Vascular Pathology in the Outcome of TBI
TBI 结果中的创伤性和可治疗的血管病理学
- 批准号:
10543436 - 财政年份:2022
- 资助金额:
$ 51.46万 - 项目类别:
Technology and digital media's influence on preschool children's sleep and weight status
技术和数字媒体对学龄前儿童睡眠和体重状况的影响
- 批准号:
10532290 - 财政年份:2022
- 资助金额:
$ 51.46万 - 项目类别:
Technology and digital media's influence on preschool children's sleep and weight status
技术和数字媒体对学龄前儿童睡眠和体重状况的影响
- 批准号:
10701895 - 财政年份:2022
- 资助金额:
$ 51.46万 - 项目类别: