Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
声音运动控制和感觉运动学习 - 行为、肌肉和神经元
基本信息
- 批准号:8628886
- 负责人:
- 金额:$ 32.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlgorithmsAnimalsAreaAuditory pitchAutomobile DrivingBehaviorBehavior ControlBehavioralBiological ModelsBiomechanicsBirdsBrainCell NucleusClinicalComplexDataDiseaseE-learningFrequenciesGesturesGoalsHumanIndividualInvestigationLearningLinkModelingMotorMotor ActivityMuscleNervous System TraumaNeurodegenerative DisordersNeuronsNeurosciencesOutcome StudyOutputPatientsPerformancePhysiologicalPlasticsProbabilityProblem SolvingProcessProductionProsencephalonPsychological reinforcementPsychophysicsRehabilitation therapyResearchScheduleSensorySignal TransductionSiteSongbirdsSpeech DisordersStrokeStructureSystemTestingTimeWorkauditory feedbackbasedesignexperienceimprovedinnovationinsightlearned behaviormathematical modelmind controlmotor controlmotor learningnervous system disorderneural circuitneurophysiologyprogramspublic health relevancerelating to nervous systemresearch studystatisticstheoriesvocal controlvocal learning
项目摘要
DESCRIPTION (provided by applicant): A central goal of neuroscience is to understand how learning algorithms are implemented by neurons and muscles. However, despite decades of psychophysical studies in humans, our understanding of how motor learning is implemented physiologically is rudimentary. A critical gap therefore exists between psychophysical models of learning and the physiological changes in the motor program that reshape behavior. Songbirds provide a physiologically accessible model system in which to investigate behavioral plasticity. However, song learning has previously been studied on timescales too long to allow single-neuron recordings, making it impossible to identify the changes in neural activity that underlie learning. Furthermore, the functions of the song muscles themselves are poorly understood, limiting our understanding of how vocal muscles and the neurons that activate them control behaviorally important acoustic parameters. The proposed experiments overcome these obstacles by combining behavioral and computational approaches drawn from human motor psychophysics with the neurophysiological accessibility of the songbird system, linking learning algorithms to neurons and muscles. Our long-term goal is to understand how the brain controls and modifies vocal output as an animal acquires vocal behaviors and maintains vocal performance throughout its lifetime. The objective of the proposed experiments is to reveal how a single acoustic parameter - fundamental frequency (pitch) - is modified during short-term vocal error correction. Our central hypothesis is that pitch learning depends strongly on the statistics of prior sensorimotor experience, that vocal muscles exert bidirectional influence on pitch across different vocal gestures ("song syllables"), and that pitch learning is implemented by altering the
spike content of bursts fired by neurons in a forebrain premotor nucleus. Drawing on significant quantities of preliminary data, three specific aims will test this hypothesis. The first aim will challenge current theories of vocal learning by using manipulations of auditory feedback to drive adaptive pitch changes in singing birds. The second specific aim will quantify the functions of individual vocal muscles and reveal how muscle activity changes during learning by combining precisely-timed muscle stimulation, behavioral manipulations, and EMG recordings. The third aim will (for the first time) define the changes neural activity that underlie vocal learning by recording from single neurons during a rapid vocal learning paradigm, identifying a locus of vocal motor plasticity and establishing the songbird as one of the only available systems for studying changes in neural activity during online learning. This approach is innovative because it allows us to detect changes in motor command signals online during learning, providing a critical link between behavioral and physiological approaches to motor learning. These studies are significant because a better understanding of the mechanisms of sensorimotor learning could aid in the design of rehabilitative strategies that exploit the plasticity of complex behavio.
描述(由申请人提供):神经科学的核心目标是了解如何由神经元和肌肉实施学习算法。然而,尽管在人类中进行了数十年的心理物理研究,但我们对生理学习方式实施的理解是基本的。因此,学习的心理物理模型与重塑行为的运动计划的生理变化之间存在一个关键的差距。鸣禽提供了一个可访问生理可访问的模型系统,以研究行为可塑性。但是,以前在时间尺度上研究了歌曲学习太长,无法允许单神经元录音,因此无法确定学习构成的神经活动的变化。此外,歌曲肌肉本身的功能知之甚少,从而限制了我们对激活它们的声带和神经元如何控制行为重要的声学参数的理解。提出的实验通过将人类运动心理物理学的行为和计算方法与鸣禽系统的神经生理可及性相结合,将学习算法与神经元和肌肉联系起来,从而克服了这些障碍。我们的长期目标是了解大脑如何控制和修饰声音输出,因为动物会获得声音行为并在其一生中保持声音表现。提出的实验的目的是揭示在短期声音误差校正期间修改单个声学参数(基本频率(音调))的方式。我们的核心假设是,音调学习在很大程度上取决于先前的感觉运动体验的统计数据,声音肌肉在跨不同的人声手势(“ Song Syllables”)上对音调产生双向影响,并且通过更改来实现音高学习
神经元在前脑前核中发射的爆发的尖峰含量。利用大量的初步数据,三个具体目标将检验这一假设。第一个目的将通过使用听觉反馈来推动唱歌鸟的自适应音高的变化来挑战当前声乐学习的理论。第二个特定目的将量化单个声音肌肉的功能,并通过结合精确的肌肉刺激,行为操纵和EMG记录来揭示学习过程中肌肉活动的变化。第三个目标(首次)将定义神经活动的变化,这些变化是通过在快速的人声学习范式中从单个神经元录制的声音学习的基础的变化,确定了声带可塑性的源头,并确定鸣人是在线学习过程中研究神经活动变化的唯一可用系统之一。这种方法具有创新性,因为它使我们能够在学习过程中检测到在线运动命令信号的变化,从而在行为和生理方法之间提供了至关重要的联系。这些研究很重要,因为对感觉运动学习机制的更好理解可以帮助设计康复策略,从而利用复杂行为的可塑性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Sober其他文献
Samuel Sober的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Sober', 18)}}的其他基金
Administrative Supplement: Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
行政补充:发声运动控制和感觉运动学习 - 行为、肌肉和神经元
- 批准号:
8849720 - 财政年份:2014
- 资助金额:
$ 32.14万 - 项目类别:
Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
声音运动控制和感觉运动学习 - 行为、肌肉和神经元
- 批准号:
10433831 - 财政年份:2013
- 资助金额:
$ 32.14万 - 项目类别:
Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
声音运动控制和感觉运动学习 - 行为、肌肉和神经元
- 批准号:
8438872 - 财政年份:2013
- 资助金额:
$ 32.14万 - 项目类别:
Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
声音运动控制和感觉运动学习 - 行为、肌肉和神经元
- 批准号:
10349066 - 财政年份:2013
- 资助金额:
$ 32.14万 - 项目类别:
Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
声音运动控制和感觉运动学习 - 行为、肌肉和神经元
- 批准号:
10652431 - 财政年份:2013
- 资助金额:
$ 32.14万 - 项目类别:
Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
声音运动控制和感觉运动学习 - 行为、肌肉和神经元
- 批准号:
10471656 - 财政年份:2013
- 资助金额:
$ 32.14万 - 项目类别:
Vocal motor control and sensorimotor learning - behavior, muscles, and neurons
声音运动控制和感觉运动学习 - 行为、肌肉和神经元
- 批准号:
9230448 - 财政年份:2013
- 资助金额:
$ 32.14万 - 项目类别:
相似国自然基金
加速器磁铁励磁电源扰动物理机制和观测抑制算法的研究
- 批准号:12305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:32270602
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向移动物联网的高效数据查询机制与算法研究
- 批准号:62072402
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
考虑充电站选址和容量限制的电动物流车辆路径问题研究
- 批准号:71901177
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 32.14万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 32.14万 - 项目类别:
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 32.14万 - 项目类别:
High-resolution bidirectional optical-acoustic mesoscopic neural interface for image-guided neuromodulation in behaving animals
用于行为动物图像引导神经调节的高分辨率双向光声介观神经接口
- 批准号:
10407380 - 财政年份:2022
- 资助金额:
$ 32.14万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 32.14万 - 项目类别: