Load bearing 3D printed implants for antibiotic, cell and growth factory delivery
用于抗生素、细胞和生长工厂交付的承载 3D 打印植入物
基本信息
- 批准号:8704532
- 负责人:
- 金额:$ 8.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-12 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAnimal ModelAntibioticsApplied ResearchAreaArthroplastyBiocompatible MaterialsBiological AssayBiomedical EngineeringBlood CirculationChemical EngineeringChronicClinicalCommunicable DiseasesDataDevelopmentDevicesDiagnostic radiologic examinationDistalDoseDrug Delivery SystemsEngineeringEnzyme-Linked Immunosorbent AssayExperimental ImplantsFDA approvedFemurFractureFutureGeneral HospitalsGeometryGoalsGrowth FactorHealthHealth Care CostsHip region structureHistologyHourImplantInfectionJointsKneeKnowledgeLettersLiquid substanceLocationMaintenanceMassachusettsMethodsMissionMorphologyOrthopedic Surgery proceduresOrthopedicsOryctolagus cuniculusOsteomyelitisOutcomePatientsPerformancePerfusionPilot ProjectsPolymersPolymethyl MethacrylateProcessProsthesisPublic HealthRecoveryReplacement ArthroplastyResearchRetrievalSalineSamplingSchoolsScienceScientistStagingSurgeonSystemTechnologyTimeTissuesTitaniaTitaniumTranslatingTraumaUniversitiesValidationVancomycinVertebral columnWeight-Bearing stateWorkbacterial resistancebasebonecell growthcostdensitydesignengineering designflexibilityimplantable deviceimprovedinnovationmedical schoolsmeetingsmortalitymultidisciplinarynew technologynovel strategiesresponseretinal rodssimulationspine bone structurestandard of caresuccess
项目摘要
DESCRIPTION (provided by applicant): The goal of this proposal is to improve the treatment for infections of artificial hips and knees and other implanted devices. This multidisciplinary proposal involves established and productive experts in infectious disease, orthopaedic surgery, chemical engineering, fluid dynamics and biomedical engineering from the Dept. of Orthopaedics at the Massachusetts General Hospital (MGH), Harvard Medical School and the School of Engineering and Applied Sciences at Harvard University. In this proposal, a new approach that could fundamentally change the treatment of device related infections will be evaluated. The long term goal of this work is to develop improved methods to reduce the treatment time required for eradicating peri-prosthetic infections. The particular objectives in ths application are to validate a perfusible load bearing 3D printed PEKK polymer for the controlled and sustained local delivery of antibiotics at high peri-implant doses. To achieve this objective, 3D printed polymer rods containing channels for the delivery of fluids will be implanted into the femora of rabbits that have been inoculated with Staph Aureus. The vancomycin concentration in the medullary canal, joint space and systemic circulation will be determined as well as the presence or absence of infection. Levels of vancomycin will be determined by ELISA based assays. Changes in bone morphology, tissue response and infection status will be determined by radiography, histology and microbiological culture. The central hypothesis is that local antibiotic delivery to the peri-implant space can eradicate an established infection in a short period of time. The rationale for the proposed pilot study is that perfusion enables a broader use of
ABx and greatly improved control of local ABx concentrations than ABx elution from PMMA. These advances could reduce treatment time for TJI from months to weeks. The result of Aim 1 will be a load bearing knee spacer capable of maintaining high levels of vancomycin in the peri-implant space (medullary canal and joint space). The result of Aim 2 will be validation that a
femoral rod that can eradicate infection by perfusion of vancomycin. The result of Aim 3 will be validation that a load bearing knee spacer that can eradicate infection by perfusion of vancomycin. The proposed research is innovative because it combines load-bearing implantable materials with the simplicity and flexibility of a perfusible drug delivery system. The proposed research is significant because infection is a burdensome clinical issue that results in prolonged patient suffering, increased mortality and is expected to cost $12 billion USD/yr by 2015. The impact of this study is the potential to rapidly advance treatment for bone and joint infections, reduce healthcare costs and reduce patient suffering.
描述(由申请人提供):该提案的目的是改善人造臀部和膝盖和其他植入设备的感染的治疗方法。这项多学科的建议涉及从马萨诸塞州骨科部(MGH),哈佛医学院以及哈佛大学的工程学院和应用科学学院的骨科部门的骨科手术,化学工程,流体动力学和生物医学工程领域建立的生产专家。在此提案中,将评估一种可以从根本上改变与设备相关感染治疗的新方法。这项工作的长期目标是开发改进的方法,以减少根除围场感染所需的治疗时间。应用程序中的特定目标是验证一种灌注载荷3D打印的PEKK聚合物,用于以高植入剂剂量以高植入剂剂量的局部递送。为了实现这一目标,将包含用于输送流体的通道的3D打印聚合物杆植入已接种金黄色葡萄球菌的兔子的股骨。将确定髓管,关节空间和全身循环中的万古霉素浓度以及感染的存在或不存在。万古霉素的水平将由基于ELISA的测定法确定。骨形态,组织反应和感染状态的变化将取决于射线照相,组织学和微生物培养。中心假设是,局部抗生素向植入物周围空间递送可以在短时间内消除已建立的感染。拟议的试点研究的理由是,灌注可以更广泛地使用
与PMMA的ABX洗脱相比,ABX和对局部ABX浓度的控制大大改善了。这些进步可以将TJI的治疗时间从数月减少到几周。 AIM 1的结果将是一个载荷膝关节垫片,能够在植入物周围空间(髓管和关节空间)中维持高水平的万古霉素。 AIM 2的结果将证明
可以通过灌注万古霉素来消除感染的股棒。 AIM 3的结果将证明可以通过灌注万古霉素来消除感染的载荷膝盖垫片。拟议的研究具有创新性,因为它结合了含负载的植入物材料与灌注药物输送系统的简单性和灵活性相结合。拟议的研究很重要,因为感染是一个负担重大的临床问题,导致患者长期遭受痛苦,死亡率增加,预计到2015年,损失了120亿美元/年。这项研究的影响是有可能快速提高骨骼和关节感染的治疗,减少医疗保健成本并减少患者的痛苦。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leigh Ayres其他文献
Leigh Ayres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
An Engineered Surface of Mucociliary Transport for Medical Devices
用于医疗器械的粘膜纤毛运输工程表面
- 批准号:
10627572 - 财政年份:2023
- 资助金额:
$ 8.33万 - 项目类别:
Quantifying the Race for the Surface via IV-MLSM
通过 IV-MLSM 量化表面竞赛
- 批准号:
10455337 - 财政年份:2022
- 资助金额:
$ 8.33万 - 项目类别:
Quantifying the Race for the Surface via IV-MLSM
通过 IV-MLSM 量化表面竞赛
- 批准号:
10618393 - 财政年份:2022
- 资助金额:
$ 8.33万 - 项目类别:
A Mechanical Testing Machine for Characterizing Biofilms on Experimental Tools
用于表征实验工具上生物膜的机械测试机
- 批准号:
10799118 - 财政年份:2021
- 资助金额:
$ 8.33万 - 项目类别:
Micro-engineered capsules for spatial sampling of microbiome in vivo
用于体内微生物组空间采样的微工程胶囊
- 批准号:
10269448 - 财政年份:2020
- 资助金额:
$ 8.33万 - 项目类别: