An Engineered Surface of Mucociliary Transport for Medical Devices

用于医疗器械的粘膜纤毛运输工程表面

基本信息

  • 批准号:
    10627572
  • 负责人:
  • 金额:
    $ 31.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Mucus contacted medical devices, such as airway devices and eye prostheses, suffer from mucus accumulation. Plugged mucus causes bacterial infection, airway blockage, and a requirement of frequent device cleaning and replacement, which adds significant care burdens for the patient and support community. Current approaches to mitigate mucus accumulation involve strong mechanical forces or medications, thus having intrinsic limitations and side effects. Mucociliary transport (MCT), a process by which waves of beating cilia move a blanket of mucus, forms the first-line barrier against infection in respiratory and genital tracts. Inspired by the effectiveness of MCT in clearing mucus, the objective of this project is to develop an engineered surface that enables MCT function (i.e., an engineered surface of MCT). Our objective will be achieved through a combination of cilia fabrication, surface modification, and acoustic actuation with the following aims: fabricate engineered surfaces with polarized ciliary structures (Aim 1); understand mucus stickiness on engineered surface of MCT. (Aim 2); develop platforms to test acoustic actuated MCT on engineered surfaces in vitro and in vivo (Aim 3). The proposed research is rationally built on experimental feasibility, investigator expertise, and a supportive research environment. The feasibility is supported by experimental successes in polymer ciliary surfaces, slug and pig models of mucus, and vibration of microstructures with acoustic waves. The team of investigators have expertise in MCT, microfluidics, acoustics, 3D printing, and animal models. The proposed research will be conducted within the environment of the world- renowned Lung Physiology Research Center and Roy J. Carver Department of Biomedical Engineering at the University of Iowa, with broad availability of complementary expertise in biology and engineering. The expected outcomes of this project include revealing the mechanism of MCT on engineered surfaces and delivering an innovative medical device product incorporating an engineered surface of MCT.
项目概要/摘要 粘液接触的医疗设备,例如气道装置和眼假体,会受到粘液的影响 积累。粘液堵塞会导致细菌感染、气道阻塞,并且需要经常清洁 设备清洁和更换,这给患者和支持社区增加了巨大的护理负担。 目前减轻粘液积聚的方法涉及强大的机械力或药物,因此 具有内在的局限性和副作用。粘液纤毛运输 (MCT),搏动波通过的过程 纤毛移动一层粘液,形成抵抗呼吸道和生殖道感染的第一道屏障。 受 MCT 清除粘液功效的启发,该项目的目标是开发一种 实现MCT功能的工程表面(即,MCT的工程表面)。我们的目标是 通过纤毛制造、表面修饰和声学驱动的结合来实现 以下目标:制造具有极化纤毛结构的工程表面(目标 1);了解粘液 MCT 工程表面的粘性。 (目标 2);开发平台来测试声驱动MCT 体外和体内工程表面(目标 3)。所提出的研究合理地建立在实验基础上 可行性、研究者的专业知识和支持性的研究环境。可行性得到以下支持 聚合物纤毛表面、蛞蝓和猪粘液模型以及振动的实验成功 声波的微观结构。研究人员团队拥有 MCT、微流体、声学、 3D打印和动物模型。拟议的研究将在世界环境中进行- 著名的肺生理学研究中心和 Roy J. Carver 生物医学工程系 爱荷华大学在生物学和工程学方面拥有广泛的互补专业知识。预期的 该项目的成果包括揭示 MCT 在工程表面上的作用机制并提供 采用 MCT 工程表面的创新医疗器械产品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuliang Xie其他文献

Yuliang Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuliang Xie', 18)}}的其他基金

Developing Trachea-on-a-chip to Study Particle Mucociliary Transport in Airways
开发气管芯片来研究气道中的颗粒粘液纤毛运输
  • 批准号:
    10524984
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
Developing Trachea-on-a-chip to Study Particle Mucociliary Transport in Airways
开发气管芯片来研究气道中的颗粒粘液纤毛运输
  • 批准号:
    10671564
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:

相似国自然基金

鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
  • 批准号:
    62301355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
  • 批准号:
    12304486
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
  • 批准号:
    12304492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
  • 批准号:
    82302198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
  • 批准号:
    12371422
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Bioprintable composite materials and microfluidic tools for vocal fold restoration and repair
用于声带修复和修复的生物打印复合材料和微流体工具
  • 批准号:
    10321288
  • 财政年份:
    2021
  • 资助金额:
    $ 31.9万
  • 项目类别:
Evaluation of micro-epidermal actuators on flexible substrate for noninvasive, pediatric-friendly conductive hearing aid
用于无创、儿科友好型传导助听器的柔性基底上的微表皮执行器的评估
  • 批准号:
    10204326
  • 财政年份:
    2021
  • 资助金额:
    $ 31.9万
  • 项目类别:
Vitreo-retinal disease imaging with 3D annular-array ultrasound
使用 3D 环形阵列超声进行玻璃体视网膜疾病成像
  • 批准号:
    10289702
  • 财政年份:
    2021
  • 资助金额:
    $ 31.9万
  • 项目类别:
Evaluation of micro-epidermal actuators on flexible substrate for noninvasive, pediatric-friendly conductive hearing aid
用于无创、儿科友好型传导助听器的柔性基底上的微表皮执行器的评估
  • 批准号:
    10917604
  • 财政年份:
    2021
  • 资助金额:
    $ 31.9万
  • 项目类别:
Bioprintable composite materials and microfluidic tools for vocal fold restoration and repair
用于声带修复和修复的生物打印复合材料和微流体工具
  • 批准号:
    10543434
  • 财政年份:
    2021
  • 资助金额:
    $ 31.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了