Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
基本信息
- 批准号:8739319
- 负责人:
- 金额:$ 34.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-21 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdultAgeBrainCellsChildChildhoodClinical TreatmentDataDevelopmentDevelopmental BiologyEnvironmentFutureGoalsHyperalgesiaImmunohistochemistryIn VitroInjuryInterventionInvestigationLeadLifeLinkLong-Term PotentiationMeasuresMediator of activation proteinModificationMolecularMusNeonatalNeonatal Intensive CareNeuronsNociceptionOutcomeOutputPainPain ResearchPathway interactionsPhysiologyProcessPublic HealthResearchResearch PersonnelRiskRodentSensorySensory ThresholdsSignal TransductionSliceSpinalSpinal CordSpinal cord posterior hornSurgical incisionsSynapsesSynaptic plasticityTechniquesTestingTissuesUniversitiesWorkbasecentral painchronic paincritical perioddesigndorsal hornexperiencefeedingimprovedinnovationinsightnovelpatch clamppostsynapticpublic health relevanceresearch studyresponsesensory integrationsignal processingsynaptic functiontransmission process
项目摘要
DESCRIPTION (provided by applicant): Although tissue damage commonly occurs during neonatal intensive care treatment and can alter pain sensitivity throughout life, whether such early injuries can evoke long-term changes in synaptic function within mature nociceptive pathways remains unknown. As a result, the cellular and molecular mechanisms which contribute to the persistent alterations in pain sensitivity following neonatal injury are still unclear. The long- term goal is to improve the clinical treatment of pain by determining how neonatal tissue injury influences nociceptive processing throughout development. The overall objective of this application is to identify changes within the mature rodent superficial dorsal horn (SDH) network following early tissue damage that facilitate activity-dependent plasticity at nociceptive synapses onto ascending projection neurons, which constitute the output of the spinal pain network. The central hypothesis is that neonatal tissue damage evokes persistent deficits in the function of spinal inhibitory circuits which result in decreased feed-forward inhibition of adult lamina I projection neurons, leading to an enhancement of long-term potentiation (LTP) at nociceptive synapses onto these cells. The rationale of the proposed research is that by elucidating how early tissue damage modulates the future plasticity of synapses onto adult projection neurons, these experiments will reveal potential mechanisms by which developing spinal pain circuits can be "primed" to produce a greater degree of hyperexcitability following injuries at later ages. Guided by strong preliminary data, the central hypothesis will be tested and the overall objective of this application achieved by pursuing the following specific aims: (1) Identify the prolonged effects of neonatal tissue injury on the efficay of GABAergic and glycinergic signaling onto mature lamina I projection neurons; (2) Elucidate how early tissue damage modulates the integration of sensory input within spinal lamina I projection neurons during adulthood; and (3) Determine the extent to which neonatal injury alters synaptic plasticity in mature spinal projection neurons. These aims will be accomplished by using in vitro electrophysiological, immunohistochemical, and tract-tracing techniques to characterize the effects of neonatal tissue damage on synaptic signaling within the adult SDH and determine the overall consequences of early injury for signal processing within ascending projection neurons. The outcome of these investigations will be the identification of permanent alterations in the synaptic organization of spinal pain networks following early tissue damage which promote the amplification of ascending pain signals in the CNS following subsequent noxious stimulation. As a result, the proposed research is significant because it will enhance our understanding of how nociceptive synaptic plasticity in central pain pathways is modulated by painful experience during the neonatal period and thus provide mechanistic insight into the emerging link between pediatric and adult chronic pain conditions.
描述(由申请人提供):虽然组织损伤通常发生在新生儿重症监护治疗期间,并且可能改变整个生命周期的疼痛敏感性,但这种早期损伤是否会引起成熟伤害性通路内突触功能的长期变化仍然未知。因此,导致新生儿损伤后疼痛敏感性持续改变的细胞和分子机制仍不清楚。长期目标是通过确定新生儿组织损伤如何影响整个发育过程中的伤害感受处理来改善疼痛的临床治疗。该应用的总体目标是确定成熟啮齿动物浅表背角(SDH)网络在早期组织损伤后的变化,这些变化促进伤害性突触上行投射神经元的活动依赖性可塑性,构成脊髓疼痛网络的输出。核心假设是,新生儿组织损伤会引起脊髓抑制回路功能的持续缺陷,从而导致成年椎板 I 投射神经元的前馈抑制减少,从而导致这些神经元的伤害性突触的长时程增强 (LTP) 增强。细胞。这项研究的基本原理是,通过阐明早期组织损伤如何调节成年投射神经元突触的未来可塑性,这些实验将揭示潜在的机制,通过这些机制,发育中的脊髓疼痛回路可以“启动”,以产生更大程度的过度兴奋。晚年受伤。在强有力的初步数据的指导下,将测试中心假设,并通过追求以下具体目标来实现本申请的总体目标:(1)确定新生儿组织损伤对成熟层 I 上 GABA 能和甘氨酸能信号传导功效的长期影响投射神经元; (2) 阐明早期组织损伤如何调节成年期椎板 I 投射神经元内感觉输入的整合; (3)确定新生儿损伤改变成熟脊髓投射神经元突触可塑性的程度。这些目标将通过使用体外电生理学、免疫组织化学和纤维束追踪技术来表征新生儿组织损伤对成人 SDH 内突触信号传导的影响,并确定早期损伤对上行投射神经元内信号处理的总体影响。这些研究的结果将是确定早期组织损伤后脊髓疼痛网络突触组织的永久性改变,这会促进随后的有害刺激后中枢神经系统中上行疼痛信号的放大。因此,拟议的研究具有重要意义,因为它将增强我们对新生儿期疼痛经历如何调节中枢疼痛通路中的伤害性突触可塑性的理解,从而为儿科和成人慢性疼痛状况之间新出现的联系提供机制见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark L Baccei其他文献
Mark L Baccei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark L Baccei', 18)}}的其他基金
Neuromodulatory regulation of synaptic plasticity in spinal nociceptive circuits
脊髓伤害感受回路突触可塑性的神经调节
- 批准号:
10444455 - 财政年份:2022
- 资助金额:
$ 34.33万 - 项目类别:
Neuromodulatory regulation of synaptic plasticity in spinal nociceptive circuits
脊髓伤害感受回路突触可塑性的神经调节
- 批准号:
10589933 - 财政年份:2022
- 资助金额:
$ 34.33万 - 项目类别:
Identification of novel analgesic targets in ascending spinal projection neurons
上行脊髓投射神经元中新型镇痛靶点的鉴定
- 批准号:
9486008 - 财政年份:2017
- 资助金额:
$ 34.33万 - 项目类别:
Identification of novel analgesic targets in ascending spinal projection neurons
上行脊髓投射神经元中新型镇痛靶点的鉴定
- 批准号:
9398593 - 财政年份:2017
- 资助金额:
$ 34.33万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
8629852 - 财政年份:2013
- 资助金额:
$ 34.33万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9760819 - 财政年份:2013
- 资助金额:
$ 34.33万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9084654 - 财政年份:2013
- 资助金额:
$ 34.33万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
10343830 - 财政年份:2013
- 资助金额:
$ 34.33万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
10560478 - 财政年份:2013
- 资助金额:
$ 34.33万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9291516 - 财政年份:2013
- 资助金额:
$ 34.33万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Characterizing the functional heterogeneity of the mouse paralaminar nucleus
表征小鼠板旁核的功能异质性
- 批准号:
10678525 - 财政年份:2023
- 资助金额:
$ 34.33万 - 项目类别:
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 34.33万 - 项目类别:
Inhibitory feedback in the avian auditory brainstem
鸟类听觉脑干的抑制反馈
- 批准号:
10677324 - 财政年份:2023
- 资助金额:
$ 34.33万 - 项目类别:
Sympathetic neural patterns and transduction in obesity-associated hypertension
肥胖相关高血压的交感神经模式和转导
- 批准号:
10877436 - 财政年份:2023
- 资助金额:
$ 34.33万 - 项目类别:
Role of spontaneous activity towards the assembly and function of neocortical circuits
自发活动对新皮质回路的组装和功能的作用
- 批准号:
10737253 - 财政年份:2023
- 资助金额:
$ 34.33万 - 项目类别: