Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
基本信息
- 批准号:9760819
- 负责人:
- 金额:$ 36.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-21 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAgeAsthmaAutomobile DrivingBehavioralBirthBrainCellsChildChildhoodCoupledDataDevelopmentDynorphinsElectrophysiology (science)ExhibitsFiberFoundationsFundingGenerationsGoalsHypersensitivityImmunohistochemistryImpairmentIn VitroInfantInhibitory SynapseInjuryInterneuronsInvestigationKnowledgeLifeLong-Term EffectsMechanicsMediatingMolecularMusNeonatalNervous system structureNeurobiologyNeuronsNeuropeptidesNociceptionObesityOutcomeOutputPainPathologicPathway interactionsPopulationPosterior Horn CellsPredispositionProcessPublic HealthReflex actionResearchSensorySeveritiesShapesSignal TransductionSpinalSpine painSurgical InjuriesSurgical incisionsSynapsesTechniquesTestingTimeTissuesTraumaWorkbasebehavior measurementbehavioral studycentral painchronic paincritical perioddesigndevelopmental neurobiologydorsal horneconomic costexperiencegenetic approachinnovationinsightintersectionalitymultidisciplinaryneonatal injuryneonatal periodneonateneural circuitnovelnovel therapeutic interventionoptogeneticspain reductionpain sensationpain sensitivitypatch clamppostnatal developmentpreventsensory inputsynaptic functionsynaptic inhibition
项目摘要
Despite growing evidence that tissue damage during a critical period of early life can exacerbate pain
severity following subsequent injury, the cellular and molecular mechanisms by which neonatal trauma can
‘prime’ developing nociceptive pathways remain unclear. Furthermore, while inhibitory interneurons in the adult
spinal dorsal horn (DH) are known to be comprised of multiple subpopulations which regulate distinct aspects
of sensory processing, the classes of inhibitory interneurons that are important for shaping pain sensitivity in
the neonate have yet to be identified. Finally, the degree to which neonatal injury primes developing pain
circuits by disrupting the maturation of specific subpopulations of inhibitory DH neurons necessary for
feedforward inhibition of ascending spinal projection neurons has yet to be elucidated. The long-term goal is to
facilitate the design of age-appropriate strategies to treat chronic pain by advancing our understanding of the
developmental neurobiology of central nociceptive networks. The objective of this application is to elucidate
the consequences of early tissue injury for the maturation of identified inhibitory synaptic circuits within the
spinal DH. The central hypothesis is that neonatal tissue damage disrupts the development of primary afferent
drive to dynorphin-expressing (DYN) interneurons mediating feedforward inhibition of ascending projection
neurons, which contributes to the priming of spinal nociceptive circuits to subsequent injury. The rationale of
the proposed research is that by yielding novel insight into the postnatal development of distinct spinal
inhibitory circuits under normal and pathological conditions, these studies will lay a conceptual foundation for
new therapeutic approaches to restrict the output of the spinal pain network in an age-specific manner and
minimize the adverse long-term effects of neonatal injury on the developing CNS. Guided by strong
preliminary data, the central hypothesis will be tested and the overall objective of this application achieved by
pursuing the following specific aims: (1) Determine how early tissue damage shapes primary afferent drive to
inhibitory interneurons in the developing DH; (2) Identify the DH interneurons which mediate feedforward
inhibition of developing spinal projection neurons under normal and pathological conditions; and (3) Identify the
inhibitory interneurons in the developing DH whose ability to suppress pain is compromised by neonatal tissue
injury. These aims will be accomplished by using a multidisciplinary experimental approach that includes in
vitro electrophysiological, optogenetic, chemogenetic, behavioral and immunohistochemical techniques. The
outcome of these investigations will be the first insight into how early tissue damage alters the functional
organization of inhibitory microcircuits in the developing spinal nociceptive network and thereby diminishes
their ability to suppress pain sensation. As a result, the proposed research is significant because it will identify
the specific inhibitory synaptic pathways within the spinal DH that must ultimately be restored in order to
prevent the exaggerated susceptibility to chronic pain following neonatal tissue damage.
尽管越来越多的证据表明生命早期关键时期的组织损伤会加剧疼痛
随后损伤后的严重程度,新生儿创伤可能的细胞和分子机制
此外,成人中的抑制性中间神经元的“主要”发展伤害感受途径仍不清楚。
已知脊髓背角 (DH) 由多个亚群组成,这些亚群调节不同的方面
感觉处理过程中,抑制性中间神经元的类别对于塑造疼痛敏感性很重要
最后,新生儿损伤引发疼痛的程度尚未确定。
通过破坏特定的抑制性 DH 神经元亚群的成熟来抑制环路
上行脊髓投射神经元的前馈抑制尚未阐明。
通过加深我们对慢性疼痛的理解,促进设计适合年龄的策略来治疗慢性疼痛
本应用的目的是阐明中枢伤害性网络的发育神经生物学。
早期组织损伤对已识别的抑制性突触回路成熟的影响
脊髓 DH 的中心假设是新生儿组织损伤破坏了初级传入神经的发育。
驱动表达强啡肽(DYN)的中间神经元介导上行投射的前馈抑制
神经元,这有助于启动脊髓伤害性回路以应对随后的损伤。
拟议的研究是通过对不同脊柱的出生后发育产生新的见解
正常和病理条件下的抑制回路,这些研究将为
新的治疗方法以特定年龄的方式限制脊柱疼痛网络的输出,
在强有力的指导下,尽量减少新生儿损伤对发育中的中枢神经系统的不利长期影响。
初步数据,将测试中心假设,并通过以下方式实现该应用程序的总体目标
追求以下具体目标:(1)确定早期组织损伤如何塑造初级传入驱动
发育中的 DH 中的抑制性中间神经元;(2) 识别介导前馈的 DH 中间神经元
在正常和病理条件下抑制脊髓投射神经元的发育;以及 (3) 识别
发育中的 DH 中的抑制性中间神经元,其抑制疼痛的能力受到新生儿组织的损害
这些目标将通过使用多学科实验方法来实现,其中包括:
体外电生理学、光遗传学、化学遗传学、行为和免疫组织化学技术。
这些研究的结果将首次深入了解早期组织损伤如何改变功能
抑制性微电路在发育中的脊髓伤害性网络中的组织,从而减少
因此,这项研究具有重要意义,因为它将确定它们抑制疼痛的能力。
脊髓 DH 内的特定抑制性突触通路最终必须恢复,以便
防止新生儿组织损伤后对慢性疼痛的过度敏感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark L Baccei其他文献
Mark L Baccei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark L Baccei', 18)}}的其他基金
Neuromodulatory regulation of synaptic plasticity in spinal nociceptive circuits
脊髓伤害感受回路突触可塑性的神经调节
- 批准号:
10444455 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Neuromodulatory regulation of synaptic plasticity in spinal nociceptive circuits
脊髓伤害感受回路突触可塑性的神经调节
- 批准号:
10589933 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Identification of novel analgesic targets in ascending spinal projection neurons
上行脊髓投射神经元中新型镇痛靶点的鉴定
- 批准号:
9486008 - 财政年份:2017
- 资助金额:
$ 36.26万 - 项目类别:
Identification of novel analgesic targets in ascending spinal projection neurons
上行脊髓投射神经元中新型镇痛靶点的鉴定
- 批准号:
9398593 - 财政年份:2017
- 资助金额:
$ 36.26万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
8739319 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
8629852 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9084654 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
10343830 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
10560478 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9883847 - 财政年份:2013
- 资助金额:
$ 36.26万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
叶黄素调控脂代谢紊乱所致年龄相关性黄斑病变的血-视网膜屏障损伤机制研究
- 批准号:82373570
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
The Causal Impact of Poverty Reduction on Housing Conditions of Low-Income, U.S. Children and the Role of Housing and Neighborhood Ecosystems on Young Children's Healthy Development
减贫对美国低收入儿童住房条件的因果影响以及住房和邻里生态系统对幼儿健康发展的作用
- 批准号:
10678527 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Early Life Pulmonary Infection, Microbiome and Trained Innate Immunity
生命早期肺部感染、微生物组和经过训练的先天免疫
- 批准号:
10677304 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Factors Influencing Pediatric Asthma into Adulthood (FIPA2)
影响成年期小儿哮喘的因素 (FIPA2)
- 批准号:
10778115 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别: