Designer DHPRs, EC coupling and an expanded genetic code in skeletal muscle
骨骼肌中设计的 DHPR、EC 耦合和扩展遗传密码
基本信息
- 批准号:8766411
- 负责人:
- 金额:$ 19.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdenovirusesAmino AcidsAmino Acyl-tRNA SynthetasesBenzophenonesBindingBiochemicalBiologicalBiological ModelsBiological ProcessBiologyCalcium ChannelCardiacCell modelCell surfaceCellsChemicalsCodon NucleotidesCommunitiesComplexCouplingDihydropyridine ReceptorsDyesEngineeringEnvironmentGenerationsGenesGeneticGenetic CodeGoalsLifeLigaseLiteratureMechanicsMediatingMembraneMolecular ConformationMuscleMuscle CellsMuscle FibersPhenylalaninePhotochemistryPreparationProteinsReagentResearchRetroviridaeRyR1Ryanodine Receptor Calcium Release ChannelRyanodine ReceptorsSarcoplasmic ReticulumSideSignal TransductionSiteSkeletal MuscleSodium ChannelStructureSystemTechniquesTestingTransfer RNATyrosineWorkcell typecrosslinkin vivoinnovationinsightmillisecondnovelprotein complexprotein protein interactionpublic health relevanceresearch studyskeletalsuccesstechnological innovationtooltryptophyltyrosinevoltage
项目摘要
DESCRIPTION (provided by applicant): Excitation contraction coupling (EC-coupling) is an example of bona fide electro-chemical signal transduction essential to biological function, and is executed through short-lived, voltage-dependent changes in conformation that enable the dihydropyridine receptor (DHPR, a calcium channel) ? and ? subunits on the muscle-cell surface to interact with ryanodine receptor (RyR) on the sarcoplasmic reticulum. The fact that voltage triggers the key protein-protein interactions between DHPR (on the cell surface) and RyR (intracellular) channels represents a significant technical barrier to their study outside the cell. The capture and characterization of static and voltage-driven transient protein-protein interactions between DHPR and RyR will require expansion of the genetic code in muscle and, concomitantly, expansion of the experimental arsenal for the study of muscle biology. Our long-term goal is to apply advances in the burgeoning field of chemical biology to testing the long-standing hypothesis that voltage-driven protein-protein (mechanical) coupling between DHPR and RyR facilitates rapid release of Ca2+ from the internal stores. The objective of the proposed research is to apply an innovative chemical biology approach - the incorporation of a genetically encoded synthetic amino acid benzophenone-Phe (Bpa) with a unique photoactivated crosslinking activity into designer DHPR's - in the environment of skeletal muscle, using it to covalently trap otherwise elusive, transient protein complexes. Several key innovations make our study feasible: the use of retro- and adenovirus to express the orthogonal tRNA and Bpa synthetase genes; large-scale preparations involving esterfication strategies used previously to generate Fluo-AM dyes to produce a form of Bpa that is highly soluble, non-toxic and biosynthetically competent for genetic incorporation into muscle; and, while not the subject of our present objective, we show proof-of-principle Bpa incorporation into related voltage-gated sodium channels to enable rapid (millisecond-scale) photo-crosslinking. The experiments proposed here will build on these advances - using a variety of muscle-cell models, including myotube cultures - adapting these approaches to the analysis of DHPR-RyR complexes. In Aim 1 we will be guided by an existing crystal structure of the a- and b-interface as a model system for genetically encoded photochemistry in DHPR's, and in Aim 2 we will identify the amino- acid side chains in the DHPR that support voltage-driven interactions with Ryr. The contributions of this study will be new tools (techniques, reagents, concepts) for the study of transient protein interactions in muscle, and an understanding of DHPR structure that will be essential to identifying the so-far elusive molecular interactions between it and the RyR. These contributions will be significant in that our conceptual innovations and technological breakthroughs will provide fresh insight on a previously intractable mechanism, while 'raising all boats' in the field
of muscle biology.
描述(由申请人提供):激发收缩耦合(EC-耦合)是对生物功能至关重要的真正电化学信号转导的一个例子,它是通过短暂的、电压依赖性构象变化来实现的,从而使二氢吡啶受体能够发挥作用(DHPR,钙通道)?和 ?肌细胞表面的亚基与肌浆网上的兰尼碱受体 (RyR) 相互作用。电压触发 DHPR(细胞表面)和 RyR(细胞内)通道之间关键的蛋白质-蛋白质相互作用这一事实,为他们在细胞外的研究带来了重大的技术障碍。 DHPR 和 RyR 之间静态和电压驱动的瞬时蛋白质-蛋白质相互作用的捕获和表征将需要扩展肌肉中的遗传密码,同时还需要扩展用于肌肉生物学研究的实验库。我们的长期目标是应用化学生物学这一新兴领域的进步来检验长期以来的假设,即 DHPR 和 RyR 之间的电压驱动的蛋白质-蛋白质(机械)耦合促进内部储存的 Ca2+ 快速释放。拟议研究的目的是应用一种创新的化学生物学方法——将具有独特光活化交联活性的基因编码合成氨基酸二苯甲酮-Phe (Bpa) 纳入设计者 DHPR 中——在骨骼肌环境中,用它来共价捕获难以捉摸的瞬时蛋白质复合物。几项关键创新使我们的研究变得可行:使用逆转录病毒和腺病毒表达正交 tRNA 和 Bpa 合成酶基因;大规模制备涉及先前用于生成 Fluo-AM 染料的酯化策略,以产生一种高度可溶、无毒且具有生物合成能力的 Bpa,可将基因整合到肌肉中;而且,虽然不是我们当前目标的主题,但我们展示了将 Bpa 纳入相关电压门控钠通道以实现快速(毫秒级)光交联的原理验证。这里提出的实验将建立在这些进展的基础上 - 使用各种肌肉细胞模型,包括肌管培养 - 使这些方法适应 DHPR-RyR 复合物的分析。在目标 1 中,我们将以 a 和 b 界面的现有晶体结构为指导,作为 DHPR 中基因编码光化学的模型系统,在目标 2 中,我们将识别 DHPR 中支持电压的氨基酸侧链- 与 Ryr 驱动的互动。这项研究的贡献将是用于研究肌肉中瞬时蛋白质相互作用的新工具(技术、试剂、概念),以及对 DHPR 结构的理解,这对于识别 DHPR 与 RyR 之间迄今为止难以捉摸的分子相互作用至关重要。这些贡献意义重大,因为我们的概念创新和技术突破将为以前棘手的机制提供新的见解,同时在该领域“举起所有的船”
肌肉生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher A Ahern其他文献
Christopher A Ahern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher A Ahern', 18)}}的其他基金
Chemical biology of voltage-gated cation channels
电压门控阳离子通道的化学生物学
- 批准号:
10552311 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
A Versatile Chemical-Genetic Approach to Determine Bases for Arrhythmogenesis and Sodium Channelopathies
确定心律失常发生和钠离子通道病基础的多功能化学遗传学方法
- 批准号:
10608370 - 财政年份:2022
- 资助金额:
$ 19.24万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10334544 - 财政年份:2021
- 资助金额:
$ 19.24万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10156779 - 财政年份:2021
- 资助金额:
$ 19.24万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10550272 - 财政年份:2021
- 资助金额:
$ 19.24万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10407714 - 财政年份:2021
- 资助金额:
$ 19.24万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10627046 - 财政年份:2021
- 资助金额:
$ 19.24万 - 项目类别:
Mining the tRNA genome by live-cell imaging
通过活细胞成像挖掘 tRNA 基因组
- 批准号:
10005950 - 财政年份:2019
- 资助金额:
$ 19.24万 - 项目类别:
Photochemical determination of sodium channel voltage-dependent gating and composition
钠通道电压依赖性门控和成分的光化学测定
- 批准号:
9402276 - 财政年份:2017
- 资助金额:
$ 19.24万 - 项目类别:
Photochemical determination of sodium channel voltage-dependent gating and composition
钠通道电压依赖性门控和成分的光化学测定
- 批准号:
10004154 - 财政年份:2017
- 资助金额:
$ 19.24万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A tRNA synthetase is an amino acid sensor for TOR in plants
tRNA 合成酶是植物中 TOR 的氨基酸传感器
- 批准号:
10795209 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Investigating the Role of Seryl-tRNA Synthetase in Mitochondrial Biology and Human Recessive Disease
研究 Seryl-tRNA 合成酶在线粒体生物学和人类隐性疾病中的作用
- 批准号:
10750183 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Understanding the Role of the Integrated Stress Response in tRNA Synthetase-associated Charcot-Marie-Tooth Disease
了解综合应激反应在 tRNA 合成酶相关夏科-马里-图思病中的作用
- 批准号:
10740335 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Development of a Gene-Transfer-Resistant and Biocontained Next-Generation Bacterial Host for Controlled Drug Delivery
开发用于受控药物输送的抗基因转移和生物包容的下一代细菌宿主
- 批准号:
10784171 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Dissecting the Integrated Stress Response in tRNA Synthetase-Associated Neuropathies
剖析 tRNA 合成酶相关神经病的综合应激反应
- 批准号:
10647281 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别: